Find the difference:

[tex]\frac{x+1}{x-1} - \frac{x-8}{x-1}[/tex]

A. [tex]\frac{9}{x-1}[/tex]
B. [tex]\frac{2x-7}{x-1}[/tex]
C. [tex]\frac{-7}{x-1}[/tex]
D. [tex]\frac{2x+9}{x-1}[/tex]



Answer :

To find the difference between the two rational expressions [tex]\(\frac{x+1}{x-1}-\frac{x-8}{x-1}\)[/tex], we will follow a step-by-step approach.

1. Identify a common denominator: The denominators of both fractions are the same, [tex]\(x-1\)[/tex]. This simplifies our task because we do not need to find a new common denominator.

2. Combine the numerators over the common denominator:
[tex]\[ \frac{x+1}{x-1} - \frac{x-8}{x-1} = \frac{(x+1) - (x-8)}{x-1} \][/tex]

3. Simplify the numerator:
[tex]\[ (x+1) - (x-8) \][/tex]
Removing the parentheses:
[tex]\[ x + 1 - x + 8 \][/tex]

4. Combine like terms:
[tex]\[ (x - x) + (1 + 8) = 0 + 9 = 9 \][/tex]

5. Write the simplified expression over the common denominator:
[tex]\[ \frac{9}{x-1} \][/tex]

Thus, the difference between [tex]\(\frac{x+1}{x-1}\)[/tex] and [tex]\(\frac{x-8}{x-1}\)[/tex] is:
[tex]\[ \frac{9}{x-1} \][/tex]

Therefore, the correct choice from the given options is:
[tex]\[ \frac{9}{x-1} \][/tex]