Answer :

To find [tex]\(\frac{dy}{dx}\)[/tex] for the curve defined by the equation [tex]\(3xy + 2(xy)^2 + xy^3 = 1\)[/tex], we will employ implicit differentiation. Here's a step-by-step solution:

1. Start with the given equation:
[tex]\[ 3xy + 2(xy)^2 + xy^3 = 1 \][/tex]

2. Differentiate both sides of the equation implicitly with respect to [tex]\(x\)[/tex]:

For the left-hand side, use the product rule and chain rule as needed:

- Differentiate [tex]\(3xy\)[/tex]:
[tex]\[ \frac{d}{dx}(3xy) = 3 \left( x \frac{dy}{dx} + y \right) \][/tex]

- Differentiate [tex]\(2(xy)^2\)[/tex]:
Let [tex]\(u = xy\)[/tex]. Thus, the term becomes [tex]\(2u^2\)[/tex].
[tex]\[ \frac{d}{dx}(2u^2) = 4u \frac{du}{dx} \quad \text{where } u = xy \][/tex]
Now, differentiate [tex]\(u = xy\)[/tex] using the product rule:
[tex]\[ \frac{du}{dx} = y + x \frac{dy}{dx} \][/tex]
So,
[tex]\[ \frac{d}{dx}(2(xy)^2) = 4(xy) \left( y + x \frac{dy}{dx} \right) \][/tex]

- Differentiate [tex]\(xy^3\)[/tex]:
[tex]\[ \frac{d}{dx}(xy^3) = x \cdot 3y^2 \frac{dy}{dx} + y^3 \][/tex]

Putting these differentiations together, the left-hand side becomes:
[tex]\[ 3 \left( x \frac{dy}{dx} + y \right) + 4(xy) \left( y + x \frac{dy}{dx} \right) + x \cdot 3y^2 \frac{dy}{dx} + y^3 \][/tex]

3. Differentiate the right-hand side of the equation (which is 1):
[tex]\[ \frac{d}{dx}(1) = 0 \][/tex]

4. Combine the results to form an equation:
[tex]\[ 3 \left( x \frac{dy}{dx} + y \right) + 4(xy) \left( y + x \frac{dy}{dx} \right) + 3xy^2 \frac{dy}{dx} + y^3 = 0 \][/tex]

5. Simplify the equation:
Distribute and combine like terms:
[tex]\[ 3x \frac{dy}{dx} + 3y + 4xy^2 + 4x^2y \frac{dy}{dx} + 3xy^2 \frac{dy}{dx} + y^3 = 0 \][/tex]

Group the terms involving [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \left( 3x + 4x^2y + 3xy^2 \right) \frac{dy}{dx} + \left( 3y + 4xy^2 + y^3 \right) = 0 \][/tex]

6. Isolate [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \left( 3x + 4x^2y + 3xy^2 \right) \frac{dy}{dx} = - \left( 3y + 4xy^2 + y^3 \right) \][/tex]

Solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{- \left( 3y + 4xy^2 + y^3 \right)}{3x + 4x^2y + 3xy^2} \][/tex]

Simplify the expression:
[tex]\[ \frac{dy}{dx} = \frac{y(-4xy - y^2 - 3)}{x(4xy + 3y^2 + 3)} \][/tex]

Thus, the derivative of [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex], given the equation [tex]\(3xy + 2(xy)^2 + xy^3 = 1\)[/tex], is:
[tex]\[ \frac{dy}{dx} = \frac{y(-4xy - y^2 - 3)}{x(4xy + 3y^2 + 3)} \][/tex]