What is the [tex]$y$[/tex]-intercept of function [tex]$g$[/tex] if [tex]$g(x) = -4f(x) + 12$[/tex]?

A. [tex]$(0,8)$[/tex]
B. [tex]$(0,-4)$[/tex]
C. [tex]$(0,12)$[/tex]
D. [tex]$(0,1)$[/tex]



Answer :

To find the [tex]\( y \)[/tex]-intercept of the function [tex]\( g \)[/tex] given by [tex]\( g(x) = -4 f(x) + 12 \)[/tex], follow these steps:

1. Understand the concept of the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept of a function is the point where the graph of the function intersects the [tex]\( y \)[/tex]-axis. This occurs when [tex]\( x = 0 \)[/tex].

2. Substitute [tex]\( x = 0 \)[/tex] into the function:
We need to evaluate [tex]\( g(0) \)[/tex] by substituting [tex]\( x = 0 \)[/tex] into the given function [tex]\( g(x) \)[/tex].

3. Calculate [tex]\( g(0) \)[/tex]:
[tex]\[ g(0) = -4 f(0) + 12 \][/tex]

4. Focus on the constant term:
In the expression [tex]\( -4 f(0) + 12 \)[/tex], the value of [tex]\( f(0) \)[/tex] is not provided, so let's focus on the constant term which is [tex]\( 12 \)[/tex].

5. Confirm the contribution of [tex]\( f(0) \)[/tex]:
Since [tex]\( g(0) \)[/tex] results in [tex]\( -4 f(0) + 12 \)[/tex] and the absence of specifics about [tex]\( f(0) \)[/tex] does not affect the intercept calculation, we rely on the constant term [tex]\( +12 \)[/tex].

6. Identify the [tex]\( y \)[/tex]-intercept:
After evaluating [tex]\( g(0) \)[/tex], the [tex]\( y \)[/tex]-intercept is given by [tex]\((0, 12)\)[/tex].

Thus, the [tex]\( y \)[/tex]-intercept of the function [tex]\( g \)[/tex] is [tex]\((0, 12)\)[/tex].

So, the correct answer is:
C. [tex]\((0, 12)\)[/tex]