Write the expression in the standard form [tex]\( a + bi \)[/tex].

[tex]\[ \left[\sqrt{2}\left(\cos \frac{3 \pi}{4} + i \sin \frac{3 \pi}{4}\right)\right]^4 \][/tex]



Answer :

Certainly! Let's rewrite the expression [tex]\[ \left[\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)\right]^4 \][/tex]
in its standard form [tex]\(a + bi\)[/tex].

First, notice that the given complex number is in polar form:
[tex]\[ r \left( \cos \theta + i \sin \theta \right) \][/tex]
where [tex]\( r = \sqrt{2} \)[/tex] and [tex]\( \theta = \frac{3 \pi}{4} \)[/tex].

Next, we need to convert this polar form to its equivalent rectangular form using Euler's formula:
[tex]\[ z = r \left( \cos \theta + i \sin \theta \right) = \sqrt{2} \left( \cos \frac{3 \pi}{4} + i \sin \frac{3 \pi}{4} \right) \][/tex]

Given [tex]\( \theta = \frac{3 \pi}{4} \)[/tex]:
[tex]\[ \cos \frac{3 \pi}{4} = -\frac{\sqrt{2}}{2} \][/tex]
[tex]\[ \sin \frac{3 \pi}{4} = \frac{\sqrt{2}}{2} \][/tex]
So, we can write:
[tex]\[ z = \sqrt{2} \left(-\frac{\sqrt{2}}{2} + i \cdot \frac{\sqrt{2}}{2}\right) \][/tex]

Simplify the expression inside the parentheses:
[tex]\[ z = \sqrt{2} \left(-\frac{\sqrt{2}}{2} + i \cdot \frac{\sqrt{2}}{2}\right) = \sqrt{2} \cdot -\frac{\sqrt{2}}{2} + \sqrt{2} \cdot i \cdot \frac{\sqrt{2}}{2} = -1 + i \][/tex]

Now, we need to raise this result to the 4th power:
[tex]\[ (-1 + i)^4 \][/tex]

We use the Binomial Theorem to expand this:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
with [tex]\( a = -1 \)[/tex], [tex]\( b = i \)[/tex], and [tex]\( n = 4 \)[/tex]:
[tex]\[ (-1 + i)^4 = \sum_{k = 0}^{4} \binom{4}{k} (-1)^{4-k} i^k \][/tex]

Expanding each term:
[tex]\[ \begin{align*} k = 0: & \binom{4}{0} (-1)^4 i^0 = 1 \cdot 1 \cdot 1 = 1 \\ k = 1: & \binom{4}{1} (-1)^3 i^1 = 4 \cdot (-1) \cdot i = -4i \\ k = 2: & \binom{4}{2} (-1)^2 i^2 = 6 \cdot 1 \cdot -1 = -6 \\ k = 3: & \binom{4}{3} (-1)^1 i^3 = 4 \cdot (-1) \cdot (-i) = 4i \\ k = 4: & \binom{4}{4} (-1)^0 i^4 = 1 \cdot 1 \cdots 1 = 1 \end{align*} \][/tex]

Adding these terms together:
[tex]\[ 1 - 4i - 6 + 4i + 1 = -4 \][/tex]

Therefore, the result is:
[tex]\[ (-1 + i)^4 = -4 + 0i \][/tex]

Summing up, the expression in the standard form [tex]\(a + bi\)[/tex] is:
[tex]\[ \boxed{-4 + 1.776356839400251e-15 i} \][/tex]

Here the imaginary part [tex]\( 1.776356839400251 \times 10^{-15} \)[/tex] is essentially zero, so it can be treated as [tex]\(-4\)[/tex] in practice.