A voltaic cell is constructed using the following half-reactions:

[tex]\[ \begin{array}{l}
Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s) \quad [ E^0 = -0.40 \, V ] \\
Ag^{+}(aq) + e^{-} \rightarrow Ag(s) \quad [ E^0 = +0.80 \, V ]
\end{array} \][/tex]

What is the standard cell potential?

A. [tex]\[ +0.40 \, V \][/tex]

B. [tex]\[ -1.20 \, V \][/tex]

C. [tex]\[ -0.40 \, V \][/tex]

D. [tex]\[ +1.20 \, V \][/tex]



Answer :

To determine the standard cell potential for the given voltaic cell, we will follow these steps:

1. Identify the half-reactions and their standard reduction potentials (given):
- Cadmium (Cd) half-reaction:
[tex]\[ \mathrm{Cd}^{2+}(aq) + 2e^- \rightarrow \mathrm{Cd}(s) \quad [E^\circ_{\mathrm{Cd}^{2+}} = -0.40\, \text{V}] \][/tex]
- Silver (Ag) half-reaction:
[tex]\[ \mathrm{Ag}^+(aq) + e^- \rightarrow \mathrm{Ag}(s) \quad [E^\circ_{\mathrm{Ag}^+} = +0.80\, \text{V}] \][/tex]

2. Determine the oxidation and reduction half-reactions:
- The half-cell with the higher reduction potential will undergo reduction (cathode).
- The half-cell with the lower reduction potential will undergo oxidation (anode).

In this case:
- The silver (Ag) half-reaction has a higher standard reduction potential (+0.80 V). Therefore, it occurs at the cathode (reduction).
- The cadmium (Cd) half-reaction has a lower standard reduction potential (-0.40 V). Therefore, it occurs at the anode (oxidation).

3. Write the overall cell reaction:
At the anode (oxidation):
[tex]\[ \mathrm{Cd}(s) \rightarrow \mathrm{Cd}^{2+}(aq) + 2e^- \][/tex]
At the cathode (reduction):
[tex]\[ \mathrm{Ag}^+(aq) + e^- \rightarrow \mathrm{Ag}(s) \][/tex]

4. Calculate the standard cell potential (E°_cell):

The formula for the standard cell potential is:
[tex]\[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \][/tex]

5. Substitute the given values:
[tex]\[ E^\circ_{\text{cell}} = E^\circ_{\mathrm{Ag}^+} - E^\circ_{\mathrm{Cd}^{2+}} \][/tex]
[tex]\[ E^\circ_{\text{cell}} = 0.80\, \text{V} - (-0.40\, \text{V}) \][/tex]

6. Perform the calculation:
[tex]\[ E^\circ_{\text{cell}} = 0.80\, \text{V} + 0.40\, \text{V} = 1.20\, \text{V} \][/tex]

Therefore, the standard cell potential for this voltaic cell is [tex]\( +1.20\, \text{V} \)[/tex].

The correct answer is:
[tex]\[ \boxed{+1.20\,\text{V}} \][/tex]