The model for long-term average temperature [tex]\( f(x) \)[/tex], in degrees Celsius, at the Wilburn airport is represented by the equation [tex]\( f(x)=5 \cos \left(\frac{x}{12}\right)+14.5 \)[/tex]. If [tex]\( x \)[/tex] represents the month of the year, in which months will the temperature be [tex]\( 17^{\circ} C \)[/tex]?

A. [tex]\( x=\frac{\pi}{3}+24 \pi n \)[/tex] and [tex]\( x=\frac{5 \pi}{3}+24 \pi n \)[/tex]

B. [tex]\( x=\frac{\pi}{3}+2 \pi n \)[/tex] and [tex]\( x=\frac{5 \pi}{3}+2 \pi n \)[/tex]

C. [tex]\( x=4 \pi+24 \pi n \)[/tex] and [tex]\( x=20 \pi+24 \pi n \)[/tex]

D. [tex]\( x=4 \pi+2 \pi n \)[/tex] and [tex]\( x=20 \pi+2 \pi n \)[/tex]



Answer :

To determine the months during which the temperature at the Willburn airport is [tex]\( 17^\circ C \)[/tex], we'll start by solving the given equation for [tex]\( x \)[/tex], the month of the year.

The given temperature model is:

[tex]\[ f(x) = 5 \cos \left(\frac{x}{12}\right) + 14.5 \][/tex]

We need to find the values of [tex]\( x \)[/tex] for which [tex]\( f(x) = 17 \)[/tex]. Thus, we set up the equation:

[tex]\[ 5 \cos \left(\frac{x}{12}\right) + 14.5 = 17 \][/tex]

Subtract 14.5 from both sides of the equation to isolate the cosine term:

[tex]\[ 5 \cos \left(\frac{x}{12}\right) = 2.5 \][/tex]

Divide both sides by 5:

[tex]\[ \cos \left(\frac{x}{12}\right) = \frac{2.5}{5} \][/tex]
[tex]\[ \cos \left(\frac{x}{12}\right) = \frac{1}{2} \][/tex]

The general solutions for the equation [tex]\( \cos y = \frac{1}{2} \)[/tex] are:

[tex]\[ y = \pm \frac{\pi}{3} + 2k\pi \][/tex]
(where [tex]\( k \)[/tex] is any integer)

Since [tex]\( y = \frac{x}{12} \)[/tex], substitute back:

[tex]\[ \frac{x}{12} = \pm \frac{\pi}{3} + 2k\pi \][/tex]

Multiply through by 12 to solve for [tex]\( x \)[/tex]:

[tex]\[ x = 12 \left( \pm \frac{\pi}{3} + 2k\pi \right) \][/tex]

This gives:

[tex]\[ x = 12 \left( \frac{\pi}{3} + 2k\pi \right) \][/tex]
[tex]\[ x = 12 \cdot \frac{\pi}{3} + 24k\pi \][/tex]
[tex]\[ x = 4\pi + 24k\pi \][/tex]

And:

[tex]\[ x = 12 \left( -\frac{\pi}{3} + 2k\pi \right) \][/tex]
[tex]\[ x = 12 \cdot -\frac{\pi}{3} + 24k\pi \][/tex]
[tex]\[ x = -4\pi + 24k\pi \][/tex]

These values of [tex]\( x \)[/tex] represent months as a continuous variable. For simplicity, we then evaluate these solutions modulo [tex]\( 2\pi \)[/tex].

We note that since [tex]\( x \)[/tex] stands for months and should be within the range of a year, we simplify using modulo [tex]\( 24\pi \)[/tex] to find relevant months within the first 12 months (since [tex]\( 24\pi \)[/tex] corresponds to 12 months):

[tex]\[ 4\pi \mod 24\pi = 4\pi \][/tex]

For [tex]\( x = 4\pi \)[/tex], convert it to months:

[tex]\[ 4\pi \times \frac{12}{2\pi} = 24 \div 2 = 2 \][/tex]

Next,

[tex]\[ 20\pi \mod 24\pi = 20\pi \][/tex]

For [tex]\( x = 20\pi \)[/tex], convert it to months:

[tex]\[ 20\pi \times \frac{12}{2\pi} = 120 \div 2 = 10 \][/tex]

Thus, the months in which the temperature will be [tex]\( 17^\circ C \)[/tex] are:

[tex]\[ x = 4\pi + 24k\pi \][/tex]
[tex]\[ x = 20\pi + 24k\pi \][/tex]

These correspond to the months found through calculation: the 4th month (April) and the 10th month (October).

The correct answer is then the fourth given option:

[tex]\[ x = 4\pi + 2\pi n \][/tex]
[tex]\[ x = 20\pi + 2\pi n \][/tex]