100 POINTS FOR ANSWERING IMMEDIATELY!!

A satellite is moving in an orbit at a distance of 80,000 km from the center of the Earth. If the satellite is to transfer to a stable orbit where the new velocity is double its original value, what should the new orbital radius be?



Answer :

Answer:

[tex]r_{2} =\frac{80,000 \;km}{4} =20,000 \;km[/tex]

Explanation:
To find the new orbital radius where the satellite's velocity is doubled, we'll need to use the relationship between orbital radius and velocity for circular orbits, which is derived from Kepler's Third Law and Newton's Law of Gravitation.

Original Orbit Details:

  • Distance from the Earth's center: [tex]r_{1} =80,000 \ km[/tex]

Orbital Velocity Equation:

The orbital velocity ([tex]v[/tex]) in a circular orbit is given by:

                                                                            [tex]v=\sqrt\frac{GM}{r}[/tex]

where:

[tex]G[/tex] is the gravitational constant [tex](6.67430 \; \times 10^{-11} \; m^{3} kg^{-1} s^{-2} )[/tex]
[tex]M[/tex]  is the mass of the Earth [tex](5.972 \times 10^{24} \,kg)[/tex]
[tex]r[/tex] is the orbital radius

Initial Velocity Calculation:

                                         [tex]v_{1} =\sqrt\frac{GM}{r_{1} }[/tex]


New Velocity:

The new velocity [tex]v_{2}[/tex] is double the initial velocity:
                                   
                                                                   [tex]v_{2} = 2 v_{1}[/tex]


New Orbital Radius Calculation:

Using the orbital velocity formula again for the new orbit:

                                                            [tex]v_{2} =\sqrt\frac{GM}{r_{2} }[/tex]

Since [tex]v_{2} =2v_{1}[/tex]:

                                     [tex]2v_{1}= \sqrt\frac{GM}{r_{2} }[/tex]

Substituting [tex]v_{1}[/tex] from the initial velocity equation:

                                                               [tex]2\sqrt\frac{GM}{r_{1} } =\sqrt\frac{GM}{r_{2} }[/tex]

Solving for the New Radius:

Square both sides to remove the square roots:

                                                                            [tex]4\sqrt\frac{GM}{r_{1} }=\sqrt\frac{GM}{r_{2} }[/tex]

Cancel out  from both sides:

                                               [tex]4\frac{r}{1} =\frac{1}{r_{2} }[/tex]


Therefore:
                [tex]r_{2} =\frac{r_{1} }{4}[/tex]

Final Calculation:

Given [tex]r_{1}[/tex] = 80,000 km:

                                  [tex]r_{2} =\frac{80,000\, km}{4} = 20,000 \, km[/tex]