Answer :
### Part (a):
#### Simplify:
[tex]\[ \frac{1.5 \times 10^4 \times 4.5 \times 10^3}{2.5 \times 10^2} \][/tex]
Step 1: Multiply the numbers in the numerator (both coefficients and powers of 10).
Coefficients:
[tex]\[ 1.5 \times 4.5 = 6.75 \][/tex]
Powers of 10:
[tex]\[ 10^4 \times 10^3 = 10^{4+3} = 10^7 \][/tex]
So the numerator becomes:
[tex]\[ 6.75 \times 10^7 \][/tex]
Step 2: Simplify the denominator.
The denominator is:
[tex]\[ 2.5 \times 10^2 \][/tex]
Step 3: Divide the coefficients and subtract the exponents of 10 in the denominator from those in the numerator.
Coefficients:
[tex]\[ \frac{6.75}{2.5} = 2.7 \][/tex]
Powers of 10:
[tex]\[ 10^7 \div 10^2 = 10^{7-2} = 10^5 \][/tex]
Step 4: Combine the results.
So, the simplified result is:
[tex]\[ 2.7 \times 10^5 \][/tex]
Converting to standard notation:
[tex]\[ 2.7 \times 10^5 = 270,000 \][/tex]
### Part (b):
#### Simplify:
[tex]\[ \frac{6.4 \times 10^{-5} \times 3.6 \times 10^9}{1.6 \times 10^{10} \times 1.8 \times 10^{-3}} \][/tex]
Step 1: Multiply the numbers in the numerator (both coefficients and powers of 10).
Coefficients:
[tex]\[ 6.4 \times 3.6 = 23.04 \][/tex]
Powers of 10:
[tex]\[ 10^{-5} \times 10^9 = 10^{-5+9} = 10^4 \][/tex]
So the numerator becomes:
[tex]\[ 23.04 \times 10^4 \][/tex]
Step 2: Multiply the numbers in the denominator (both coefficients and powers of 10).
Coefficients:
[tex]\[ 1.6 \times 1.8 = 2.88 \][/tex]
Powers of 10:
[tex]\[ 10^{10} \times 10^{-3} =10^{10-3} = 10^7 \][/tex]
So the denominator becomes:
[tex]\[ 2.88 \times 10^7 \][/tex]
Step 3: Divide the coefficients and subtract the exponents of 10 in the denominator from those in the numerator.
Coefficients:
[tex]\[ \frac{23.04}{2.88} = 8 \][/tex]
Powers of 10:
[tex]\[ 10^4 \div 10^7 = 10^{4-7} = 10^{-3} \][/tex]
Step 4: Combine the results.
So, the simplified result is:
[tex]\[ 8 \times 10^{-3} \][/tex]
Converting to standard notation:
[tex]\[ 8 \times 10^{-3} = 0.008 \][/tex]
### Final Answer:
- Part (a): [tex]\( 270,000 \)[/tex]
- Part (b): [tex]\( 0.008 \)[/tex]
#### Simplify:
[tex]\[ \frac{1.5 \times 10^4 \times 4.5 \times 10^3}{2.5 \times 10^2} \][/tex]
Step 1: Multiply the numbers in the numerator (both coefficients and powers of 10).
Coefficients:
[tex]\[ 1.5 \times 4.5 = 6.75 \][/tex]
Powers of 10:
[tex]\[ 10^4 \times 10^3 = 10^{4+3} = 10^7 \][/tex]
So the numerator becomes:
[tex]\[ 6.75 \times 10^7 \][/tex]
Step 2: Simplify the denominator.
The denominator is:
[tex]\[ 2.5 \times 10^2 \][/tex]
Step 3: Divide the coefficients and subtract the exponents of 10 in the denominator from those in the numerator.
Coefficients:
[tex]\[ \frac{6.75}{2.5} = 2.7 \][/tex]
Powers of 10:
[tex]\[ 10^7 \div 10^2 = 10^{7-2} = 10^5 \][/tex]
Step 4: Combine the results.
So, the simplified result is:
[tex]\[ 2.7 \times 10^5 \][/tex]
Converting to standard notation:
[tex]\[ 2.7 \times 10^5 = 270,000 \][/tex]
### Part (b):
#### Simplify:
[tex]\[ \frac{6.4 \times 10^{-5} \times 3.6 \times 10^9}{1.6 \times 10^{10} \times 1.8 \times 10^{-3}} \][/tex]
Step 1: Multiply the numbers in the numerator (both coefficients and powers of 10).
Coefficients:
[tex]\[ 6.4 \times 3.6 = 23.04 \][/tex]
Powers of 10:
[tex]\[ 10^{-5} \times 10^9 = 10^{-5+9} = 10^4 \][/tex]
So the numerator becomes:
[tex]\[ 23.04 \times 10^4 \][/tex]
Step 2: Multiply the numbers in the denominator (both coefficients and powers of 10).
Coefficients:
[tex]\[ 1.6 \times 1.8 = 2.88 \][/tex]
Powers of 10:
[tex]\[ 10^{10} \times 10^{-3} =10^{10-3} = 10^7 \][/tex]
So the denominator becomes:
[tex]\[ 2.88 \times 10^7 \][/tex]
Step 3: Divide the coefficients and subtract the exponents of 10 in the denominator from those in the numerator.
Coefficients:
[tex]\[ \frac{23.04}{2.88} = 8 \][/tex]
Powers of 10:
[tex]\[ 10^4 \div 10^7 = 10^{4-7} = 10^{-3} \][/tex]
Step 4: Combine the results.
So, the simplified result is:
[tex]\[ 8 \times 10^{-3} \][/tex]
Converting to standard notation:
[tex]\[ 8 \times 10^{-3} = 0.008 \][/tex]
### Final Answer:
- Part (a): [tex]\( 270,000 \)[/tex]
- Part (b): [tex]\( 0.008 \)[/tex]