Evaluate the following expression:

[tex]\[ (-2)^4 + 5 \cdot \left\{ [(-4) \cdot (+8) - (-7)] - \sqrt[3]{(-4)^3} \right\} - (-2)^2 \][/tex]



Answer :

Certainly! Let's break down the expression step-by-step:

[tex]\[ (-2)^4 + 5 \cdot \left\{[(-4) \cdot (+8) - (-7)] - \sqrt[3]{(-4)^3}\right\} - (-2)^2 \][/tex]

First, calculate each part separately:

### Step 1: Calculate [tex]\((-2)^4\)[/tex]

[tex]\[ (-2)^4 = 16 \][/tex]

### Step 2: Calculate [tex]\((-4) \cdot (+8)\)[/tex]

[tex]\[ (-4) \cdot (+8) = -32 \][/tex]

### Step 3: Simplify inside the curly braces first

[tex]\[ (-4) \cdot (+8) - (-7) = -32 + 7 = -25 \][/tex]

### Step 4: Calculate [tex]\(\sqrt[3]{(-4)^3}\)[/tex]

[tex]\[ (-4)^3 = -64 \][/tex]

The cube root of [tex]\(-64\)[/tex] is:

[tex]\[ \sqrt[3]{-64} = -3.464101615137754 \][/tex]

### Step 5: Substitute and simplify inside the curly braces

[tex]\[ -25 - (\sqrt[3]{-64}) = -25 - (-3.464101615137754) = -25 + 3.464101615137754 = -21.535898384862246 \][/tex]

### Step 6: Now, calculate the full expression in the curly braces

[tex]\[ 5 \cdot (-21.535898384862246) = -107.67949192431123 \][/tex]

### Step 7: Account for [tex]\( (-2)^2 \)[/tex]

[tex]\[ (-2)^2 = 4 \][/tex]

### Step 8: Combine all parts together

[tex]\[ 16 + (-107.67949192431123) - 4 \][/tex]

### Final result:

[tex]\[ 16 - 107.67949192431123 - 4 = -91.67949192431123 \][/tex]

So, the final culmination of all calculations is:

[tex]\[ (-91.67949192431123) \][/tex]