\begin{tabular}{|c|c|}
\hline [tex]$X$[/tex] & Probability: [tex]$P(X)$[/tex] \\
\hline 0 & 0.1 \\
\hline 1 & 0.2 \\
\hline 2 & 0.4 \\
\hline 3 & 0.2 \\
\hline 4 & 0.1 \\
\hline
\end{tabular}

Using the data from the table, what is [tex]$P(3)$[/tex]?



Answer :

To find the probability [tex]\( P(3) \)[/tex] using the data from the provided table, follow these steps:

1. Identify the value of [tex]\( X \)[/tex] for which you need to find the probability. In this case, you need to find [tex]\( P(3) \)[/tex], which means [tex]\( X = 3 \)[/tex].

2. Look for the corresponding probability value [tex]\( P(X) \)[/tex] in the table where [tex]\( X = 3 \)[/tex].

Here is the table again for reference:

[tex]\[ \begin{array}{|c|c|} \hline X & P(X) \\ \hline 0 & 0.1 \\ \hline 1 & 0.2 \\ \hline 2 & 0.4 \\ \hline 3 & 0.2 \\ \hline 4 & 0.1 \\ \hline \end{array} \][/tex]

3. From the table, locate the row where [tex]\( X = 3 \)[/tex]. The corresponding probability [tex]\( P(X) \)[/tex] is [tex]\( 0.2 \)[/tex].

Therefore, the probability [tex]\( P(3) \)[/tex] is [tex]\( 0.2 \)[/tex].