Two student clubs were selling t-shirts and school notebooks to raise money for an upcoming school event. In the first few minutes, Club A sold 2 t-shirts and 3 notebooks, and made \[tex]$40. Club B sold 1 t-shirt and 1 notebook, for a total of \$[/tex]16.

The system of equations representing the sales can be written in matrix form as:
[tex]\[ \left[\begin{array}{cc}
2 & 3 \\
1 & 1
\end{array}\right] \left[\begin{array}{c}
x \\
y
\end{array}\right] = \left[\begin{array}{c}
40 \\
16
\end{array}\right] \][/tex]

Use matrices to solve the equation and determine the cost of a t-shirt (x) and the cost of a notebook (y). Show or explain all necessary steps.



Answer :

To solve the given problem using matrices, we need to determine the cost of a t-shirt and the cost of a notebook given the sales information from two student clubs.

Let's denote:
- [tex]\( x \)[/tex] as the cost of a t-shirt.
- [tex]\( y \)[/tex] as the cost of a notebook.

We have two equations based on the sales:
1. Club A sold 2 t-shirts and 3 notebooks for a total of [tex]$40. This can be written as: \[ 2x + 3y = 40 \] 2. Club B sold 1 t-shirt and 1 notebook for a total of $[/tex]16. This can be written as:
[tex]\[ x + y = 16 \][/tex]

We can express these equations in matrix form [tex]\( A \mathbf{x} = \mathbf{b} \)[/tex] as follows:
[tex]\[ \left[\begin{array}{ll} 2 & 3 \\ 1 & 1 \end{array}\right] \left[\begin{array}{l} x \\ y \end{array}\right] = \left[\begin{array}{l} 40 \\ 16 \end{array}\right] \][/tex]

Where:
- [tex]\( A \)[/tex] is the coefficient matrix:
[tex]\[ A = \left[\begin{array}{ll} 2 & 3 \\ 1 & 1 \end{array}\right] \][/tex]

- [tex]\( \mathbf{x} \)[/tex] is the column vector of unknowns:
[tex]\[ \mathbf{x} = \left[\begin{array}{l} x \\ y \end{array}\right] \][/tex]

- [tex]\( \mathbf{b} \)[/tex] is the constants matrix:
[tex]\[ \mathbf{b} = \left[\begin{array}{l} 40 \\ 16 \end{array}\right] \][/tex]

To find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we solve the matrix equation [tex]\( A \mathbf{x} = \mathbf{b} \)[/tex].

We can use the method of matrix inversion or any other suitable matrix-solving technique. For simplicity here, let's directly find the costs using given matrix knowledge:

1. Find the determinant of [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (2 \times 1) - (3 \times 1) = 2 - 3 = -1 \][/tex]

2. Find the inverse of [tex]\( A \)[/tex]:
The inverse formula for a 2x2 matrix [tex]\( \left[\begin{array}{ll} a & b \\ c & d \end{array}\right] \)[/tex] is [tex]\( \frac{1}{ad - bc} \left[\begin{array}{ll} d & -b \\ -c & a \end{array}\right] \)[/tex].
Using this formula:
[tex]\[ A^{-1} = \frac{1}{-1} \left[\begin{array}{ll} 1 & -3 \\ -1 & 2 \end{array}\right] = \left[\begin{array}{ll} -1 & 3 \\ 1 & -2 \end{array}\right] \][/tex]

3. Multiply [tex]\( A^{-1} \)[/tex] by [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \left[\begin{array}{ll} -1 & 3 \\ 1 & -2 \end{array}\right] \left[\begin{array}{l} 40 \\ 16 \end{array}\right] \][/tex]

4. Calculate the product:
[tex]\[ \mathbf{x} = \left[\begin{array}{l} (-1 \times 40) + (3 \times 16) \\ (1 \times 40) + (-2 \times 16) \end{array}\right] = \left[\begin{array}{l} -40 + 48 \\ 40 - 32 \end{array}\right] = \left[\begin{array}{l} 8 \\ 8 \end{array}\right] \][/tex]

So, the cost of a t-shirt [tex]\( x \)[/tex] is [tex]$8 and the cost of a notebook \( y \) is $[/tex]8.

[tex]\[ x = 8, \quad y = 8 \][/tex]

Therefore, the cost of a t-shirt is [tex]\( \$8 \)[/tex] and the cost of a notebook is [tex]\( \$8 \)[/tex].