Type the correct answer in the box. Use numerals instead of words.

What is the solution to this equation?

[tex]\[
\begin{array}{l}
3(n-9) - 2(n+4) = 6n \\
n = \square
\end{array}
\][/tex]



Answer :

To solve the equation [tex]\( 3(n - 9) - 2(n + 4) = 6n \)[/tex], follow these steps:

1. Distribute the constants on both sides:
- For the term [tex]\( 3(n - 9) \)[/tex]:
[tex]\[ 3(n - 9) = 3n - 27 \][/tex]
- For the term [tex]\( -2(n + 4) \)[/tex]:
[tex]\[ -2(n + 4) = -2n - 8 \][/tex]

2. Rewrite the equation with the distributed terms:
[tex]\[ 3n - 27 - 2n - 8 = 6n \][/tex]

3. Combine like terms on the left side:
- Combine the [tex]\( n \)[/tex] terms:
[tex]\[ 3n - 2n = n \][/tex]
- Combine the constants:
[tex]\[ -27 - 8 = -35 \][/tex]
- So, the equation now looks like:
[tex]\[ n - 35 = 6n \][/tex]

4. Move all terms involving [tex]\( n \)[/tex] to one side of the equation:
[tex]\[ n - 6n = 35 \][/tex]
Simplify the terms:
[tex]\[ -5n = 35 \][/tex]

5. Solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{35}{-5} \][/tex]
[tex]\[ n = -7 \][/tex]

Therefore, the value of [tex]\( n \)[/tex] is [tex]\( -7 \)[/tex].

[tex]\[ n = -7 \][/tex]