Select the correct answer.

Which inequality is equivalent to the given inequality?

[tex]-4(x+7)\ \textless \ 3(x-2)[/tex]

A. [tex]-7x\ \textless \ -34[/tex]

B. [tex]-7x\ \textgreater \ 22[/tex]

C. [tex]-7x\ \textgreater \ -34[/tex]

D. [tex]-7x\ \textless \ 22[/tex]



Answer :

To solve the inequality [tex]\( -4(x + 7) < 3(x - 2) \)[/tex], follow these steps:

1. Distribute the constants on both sides of the inequality:
[tex]\[ -4(x + 7) < 3(x - 2) \][/tex]
[tex]\[ -4x - 28 < 3x - 6 \][/tex]

2. Move the variable terms to one side by adding [tex]\(4x\)[/tex] to both sides:
[tex]\[ -28 < 3x - 6 + 4x \][/tex]
[tex]\[ -28 < 7x - 6 \][/tex]

3. Move the constant term to the other side by adding [tex]\(6\)[/tex] to both sides:
[tex]\[ -28 + 6 < 7x \][/tex]
[tex]\[ -22 < 7x \][/tex]

4. Divide both sides by [tex]\(7\)[/tex] to isolate [tex]\(x\)[/tex]:
[tex]\[ \frac{-22}{7} < x \][/tex]
[tex]\[ x > \frac{-22}{7} \][/tex]

5. Expressing it back in terms of an inequality with [tex]\(-7x\)[/tex]:
[tex]\[ -7x > 22 \][/tex]

Therefore, the correct inequality that is equivalent to the given inequality is:
[tex]\[ \boxed{ -7x > 22 } \][/tex]

This matches option B.