The graph shows [tex]$g(x) = x^2 - 9x + 20$[/tex].

What are the [tex]$x$[/tex]-intercepts of [tex]$g(x)$[/tex]?

A. [tex]$(4.5,0)$[/tex] and [tex]$(5,0)$[/tex]
B. [tex]$(0,4.5)$[/tex] and [tex]$(0,5)$[/tex]
C. [tex]$(0,5)$[/tex] and [tex]$(0,4)$[/tex]
D. [tex]$(5,0)$[/tex] and [tex]$(4,0)$[/tex]



Answer :

To find the [tex]\(x\)[/tex]-intercepts of the function [tex]\( g(x) = x^2 - 9x + 20 \)[/tex], we need to determine the points where the graph of the function crosses the [tex]\(x\)[/tex]-axis. The [tex]\(x\)[/tex]-intercepts occur where [tex]\( g(x) = 0 \)[/tex].

Step-by-step solution:

1. Set the function [tex]\( g(x) \)[/tex] equal to zero:
[tex]\[ x^2 - 9x + 20 = 0 \][/tex]

2. Solve this quadratic equation:
To solve the quadratic equation, we look for factors of 20 that add up to -9.

3. Factor the quadratic expression:
[tex]\[ (x - 4)(x - 5) = 0 \][/tex]

4. Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ x - 4 = 0 \quad \text{or} \quad x - 5 = 0 \][/tex]
Solving these equations:
[tex]\[ x = 4 \quad \text{or} \quad x = 5 \][/tex]

5. Determine the [tex]\(x\)[/tex]-intercepts:
The values of [tex]\( x \)[/tex] found indicate the points where the function crosses the [tex]\( x \)[/tex]-axis. Therefore, the [tex]\( x \)[/tex]-intercepts are at:
[tex]\[ (4, 0) \quad \text{and} \quad (5, 0) \][/tex]

So, the [tex]\( x \)[/tex]-intercepts of [tex]\( g(x) = x^2 - 9x + 20 \)[/tex] are [tex]\((4, 0)\)[/tex] and [tex]\((5, 0)\)[/tex].

Hence, the correct answer is:
[tex]\[ \boxed{(5, 0)\text{ and }(4, 0)} \][/tex]