Answer :
We are given a system of linear equations:
[tex]\[ \begin{cases} -16x + 16y + 6z = 40 \\ 8x - 5y - 4z = 0 \\ -4x + 4y + 2z = 8 \end{cases} \][/tex]
along with [tex]\( x = 0 \)[/tex]. We need to find the values of [tex]\( y \)[/tex] and [tex]\( z \)[/tex].
1. Substitute [tex]\( x = 0 \)[/tex] into the equations:
[tex]\[ \begin{cases} -16(0) + 16y + 6z = 40 \\ 8(0) - 5y - 4z = 0 \\ -4(0) + 4y + 2z = 8 \end{cases} \][/tex]
Simplifying these, we get:
[tex]\[ \begin{cases} 16y + 6z = 40 \\ -5y - 4z = 0 \\ 4y + 2z = 8 \end{cases} \][/tex]
2. Solve the simplified system of equations:
First, let's use the third equation (it has simpler coefficients):
[tex]\[ 4y + 2z = 8 \][/tex]
Divide everything by 2:
[tex]\[ 2y + z = 4 \quad \text{(Equation 1)} \][/tex]
Next, let's simplify the first equation:
[tex]\[ 16y + 6z = 40 \][/tex]
Divide everything by 2 as well:
[tex]\[ 8y + 3z = 20 \quad \text{(Equation 2)} \][/tex]
We now have:
[tex]\[ \begin{cases} 2y + z = 4 \\ 8y + 3z = 20 \end{cases} \][/tex]
3. Solve for [tex]\( y \)[/tex] and [tex]\( z \)[/tex] using substitution or elimination:
To use elimination, we can multiply Equation 1 by 3 to align [tex]\( z \)[/tex]-coefficients:
[tex]\[ 3(2y + z) = 3(4) \\ 6y + 3z = 12 \quad \text{(Equation 3)} \][/tex]
Now, subtract Equation 3 from Equation 2:
[tex]\[ (8y + 3z) - (6y + 3z) = 20 - 12 \\ 8y + 3z - 6y - 3z = 8 \\ 2y = 8 \\ y = 4 \][/tex]
Substituting [tex]\( y = 4 \)[/tex] back into Equation 1:
[tex]\[ 2(4) + z = 4 \\ 8 + z = 4 \\ z = 4 - 8 \\ z = -4 \][/tex]
Thus, the solutions are:
[tex]\[ y = 4, \quad z = -4 \][/tex]
Therefore, the values are [tex]\( \boxed{4} \)[/tex] for [tex]\( y \)[/tex] and [tex]\( \boxed{-4} \)[/tex] for [tex]\( z \)[/tex].
[tex]\[ \begin{cases} -16x + 16y + 6z = 40 \\ 8x - 5y - 4z = 0 \\ -4x + 4y + 2z = 8 \end{cases} \][/tex]
along with [tex]\( x = 0 \)[/tex]. We need to find the values of [tex]\( y \)[/tex] and [tex]\( z \)[/tex].
1. Substitute [tex]\( x = 0 \)[/tex] into the equations:
[tex]\[ \begin{cases} -16(0) + 16y + 6z = 40 \\ 8(0) - 5y - 4z = 0 \\ -4(0) + 4y + 2z = 8 \end{cases} \][/tex]
Simplifying these, we get:
[tex]\[ \begin{cases} 16y + 6z = 40 \\ -5y - 4z = 0 \\ 4y + 2z = 8 \end{cases} \][/tex]
2. Solve the simplified system of equations:
First, let's use the third equation (it has simpler coefficients):
[tex]\[ 4y + 2z = 8 \][/tex]
Divide everything by 2:
[tex]\[ 2y + z = 4 \quad \text{(Equation 1)} \][/tex]
Next, let's simplify the first equation:
[tex]\[ 16y + 6z = 40 \][/tex]
Divide everything by 2 as well:
[tex]\[ 8y + 3z = 20 \quad \text{(Equation 2)} \][/tex]
We now have:
[tex]\[ \begin{cases} 2y + z = 4 \\ 8y + 3z = 20 \end{cases} \][/tex]
3. Solve for [tex]\( y \)[/tex] and [tex]\( z \)[/tex] using substitution or elimination:
To use elimination, we can multiply Equation 1 by 3 to align [tex]\( z \)[/tex]-coefficients:
[tex]\[ 3(2y + z) = 3(4) \\ 6y + 3z = 12 \quad \text{(Equation 3)} \][/tex]
Now, subtract Equation 3 from Equation 2:
[tex]\[ (8y + 3z) - (6y + 3z) = 20 - 12 \\ 8y + 3z - 6y - 3z = 8 \\ 2y = 8 \\ y = 4 \][/tex]
Substituting [tex]\( y = 4 \)[/tex] back into Equation 1:
[tex]\[ 2(4) + z = 4 \\ 8 + z = 4 \\ z = 4 - 8 \\ z = -4 \][/tex]
Thus, the solutions are:
[tex]\[ y = 4, \quad z = -4 \][/tex]
Therefore, the values are [tex]\( \boxed{4} \)[/tex] for [tex]\( y \)[/tex] and [tex]\( \boxed{-4} \)[/tex] for [tex]\( z \)[/tex].