Part 1 of 5

The total sales [tex]\( S \)[/tex] (in thousands of DVDs) of a certain movie are given by the following formula, where [tex]\( t \)[/tex] is the number of months since the release of the DVD. Use the formula to answer the questions.

[tex]\[ S(t) = \frac{40t^2}{t^2 + 150} \][/tex]

a) Find [tex]\( S'(t) \)[/tex].

[tex]\[ S'(t) = \boxed{\square} \][/tex]



Answer :

To find the derivative of the function [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex], we start with the given function:
[tex]\[ S(t) = \frac{40 t^2}{t^2 + 150} \][/tex]

We can use the quotient rule to differentiate this function. The quotient rule states that if you have a function in the form [tex]\( \frac{u(t)}{v(t)} \)[/tex], where both [tex]\( u(t) \)[/tex] and [tex]\( v(t) \)[/tex] are differentiable functions of [tex]\( t \)[/tex], then the derivative is given by:
[tex]\[ \frac{d}{dt} \left( \frac{u(t)}{v(t)} \right) = \frac{u'(t)v(t) - u(t)v'(t)}{[v(t)]^2} \][/tex]

In our case:
[tex]\[ u(t) = 40 t^2 \quad \text{and} \quad v(t) = t^2 + 150 \][/tex]

First, we find the derivatives [tex]\( u'(t) \)[/tex] and [tex]\( v'(t) \)[/tex]:
[tex]\[ u'(t) = \frac{d}{dt} (40 t^2) = 80 t \][/tex]
[tex]\[ v'(t) = \frac{d}{dt} (t^2 + 150) = 2 t \][/tex]

Now, we apply the quotient rule:
[tex]\[ S'(t) = \frac{u'(t)v(t) - u(t)v'(t)}{[v(t)]^2} \][/tex]

Substitute [tex]\( u(t) \)[/tex], [tex]\( u'(t) \)[/tex], [tex]\( v(t) \)[/tex], and [tex]\( v'(t) \)[/tex] into the formula:
[tex]\[ S'(t) = \frac{(80 t)(t^2 + 150) - (40 t^2)(2 t)}{(t^2 + 150)^2} \][/tex]

Simplify the numerator step-by-step:
[tex]\[ S'(t) = \frac{80 t (t^2 + 150) - 80 t^3}{(t^2 + 150)^2} \][/tex]
[tex]\[ S'(t) = \frac{80 t^3 + 12000 t - 80 t^3}{(t^2 + 150)^2} \][/tex]
[tex]\[ S'(t) = \frac{12000 t}{(t^2 + 150)^2} \][/tex]

Combining like terms, we find that:
[tex]\[ S'(t) = \frac{-80 t^3 + 80 t (t^2 + 150)}{(t^2 + 150)^2} \][/tex]

After simplifying, we get the final expression for the derivative:
[tex]\[ S'(t) = \frac{-80 t^3}{(t^2 + 150)^2} + \frac{80 t}{(t^2 + 150)^2} \][/tex]

So, the derivative [tex]\( S'(t) \)[/tex] is:
[tex]\[ S'(t) = \frac{-80 t^3}{(t^2 + 150)^2} + \frac{80 t}{(t^2 + 150)} \][/tex]