Answer :
To determine how many moles of [tex]\( \text{H}_2\text{SO}_4 \)[/tex] are needed to react completely with 6.8 moles of [tex]\( \text{LiOH} \)[/tex], we can follow these steps:
1. Write the balanced chemical equation:
[tex]\[ 2 \text{LiOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Li}_2\text{SO}_4 + 2 \text{H}_2\text{O} \][/tex]
2. Determine the mole ratio from the balanced equation:
From the balanced chemical equation, we see that 2 moles of [tex]\( \text{LiOH} \)[/tex] react with 1 mole of [tex]\( \text{H}_2\text{SO}_4 \)[/tex]. This gives us the mole ratio:
[tex]\[ \frac{2 \text{ moles LiOH}}{1 \text{ mole H}_2\text{SO}_4} \][/tex]
3. Calculate the moles of [tex]\( \text{H}_2\text{SO}_4 \)[/tex] required:
Given that we have 6.8 moles of [tex]\( \text{LiOH} \)[/tex], we can use the mole ratio to find the amount of [tex]\( \text{H}_2\text{SO}_4 \)[/tex] needed.
Since 2 moles of [tex]\( \text{LiOH} \)[/tex] react with 1 mole of [tex]\( \text{H}_2\text{SO}_4 \)[/tex]:
[tex]\[ \text{Moles of } \text{H}_2\text{SO}_4 = \frac{\text{Moles of } \text{LiOH}}{2} = \frac{6.8 \text{ moles LiOH}}{2} \][/tex]
4. Perform the division:
[tex]\[ \text{Moles of } \text{H}_2\text{SO}_4 = \frac{6.8}{2} = 3.4 \][/tex]
Therefore, 3.4 moles of [tex]\( \text{H}_2\text{SO}_4 \)[/tex] are needed to react completely with 6.8 moles of [tex]\( \text{LiOH} \)[/tex].
So, the correct answer is:
[tex]\[ 3.4 \text{ mol } \text{H}_2\text{SO}_4 \][/tex]
1. Write the balanced chemical equation:
[tex]\[ 2 \text{LiOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Li}_2\text{SO}_4 + 2 \text{H}_2\text{O} \][/tex]
2. Determine the mole ratio from the balanced equation:
From the balanced chemical equation, we see that 2 moles of [tex]\( \text{LiOH} \)[/tex] react with 1 mole of [tex]\( \text{H}_2\text{SO}_4 \)[/tex]. This gives us the mole ratio:
[tex]\[ \frac{2 \text{ moles LiOH}}{1 \text{ mole H}_2\text{SO}_4} \][/tex]
3. Calculate the moles of [tex]\( \text{H}_2\text{SO}_4 \)[/tex] required:
Given that we have 6.8 moles of [tex]\( \text{LiOH} \)[/tex], we can use the mole ratio to find the amount of [tex]\( \text{H}_2\text{SO}_4 \)[/tex] needed.
Since 2 moles of [tex]\( \text{LiOH} \)[/tex] react with 1 mole of [tex]\( \text{H}_2\text{SO}_4 \)[/tex]:
[tex]\[ \text{Moles of } \text{H}_2\text{SO}_4 = \frac{\text{Moles of } \text{LiOH}}{2} = \frac{6.8 \text{ moles LiOH}}{2} \][/tex]
4. Perform the division:
[tex]\[ \text{Moles of } \text{H}_2\text{SO}_4 = \frac{6.8}{2} = 3.4 \][/tex]
Therefore, 3.4 moles of [tex]\( \text{H}_2\text{SO}_4 \)[/tex] are needed to react completely with 6.8 moles of [tex]\( \text{LiOH} \)[/tex].
So, the correct answer is:
[tex]\[ 3.4 \text{ mol } \text{H}_2\text{SO}_4 \][/tex]