The total sales [tex]\( S \)[/tex] (in thousands of DVDs) of a certain movie are given by the following formula, where [tex]\( t \)[/tex] is the number of months:
[tex]\[
S(t)=\frac{40 t^2}{t^2+150}
\][/tex]

a) Find [tex]\( S^{\prime}(t) \)[/tex].
[tex]\[
S^{\prime}(t)=\frac{-80 t^3}{(t^2+150)^2}+\frac{80 t}{(t^2+150)}
\][/tex]

b) Find [tex]\( S(10) \)[/tex] and [tex]\( S^{\prime}(10) \)[/tex].

The value of [tex]\( S(10) \)[/tex] rounded to the nearest hundredth is 16.0.
The value of [tex]\( S^{\prime}(10) \)[/tex] rounded to the nearest hundredth is 1.92.

What do the values for [tex]\( S(10) \)[/tex] and [tex]\( S^{\prime}(10) \)[/tex] indicate?

A. After 10 months, the total sales are 19,200 DVDs and the sales are increasing at the rate of 1600 DVDs per month.
B. After 10 months, the total sales are 1920 DVDs and the sales are increasing at the rate of 16 DVDs per month.
C. After 10 months, the total sales are 16,000 DVDs and the sales are increasing at the rate of 1.92 DVDs per month.
D. After 10 months, the total sales are 16,000 DVDs and the sales are increasing at the rate of 1920 DVDs per month.

c) Use the results from part (b) to estimate the total sales after 11 months.

After 11 months, the total sales will be approximately how many DVDs?
[tex]\[ \square \][/tex] (Round to the nearest whole number.)



Answer :

Let's break this problem into parts and solve it step-by-step.

### Part (a): Finding [tex]\( S'(t) \)[/tex]
The formula for the total sales [tex]\( S(t) \)[/tex] is given by:
[tex]\[ S(t) = \frac{40 t^2}{t^2 + 150} \][/tex]

To find the derivative [tex]\( S'(t) \)[/tex], we will use the quotient rule. The quotient rule for a function [tex]\( \frac{u(t)}{v(t)} \)[/tex] states:
[tex]\[ \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \][/tex]

Here, [tex]\( u(t) = 40 t^2 \)[/tex] and [tex]\( v(t) = t^2 + 150 \)[/tex]. Now, we need to compute the derivatives [tex]\( u'(t) \)[/tex] and [tex]\( v'(t) \)[/tex]:
[tex]\[ u'(t) = (40 t^2)' = 80 t \][/tex]
[tex]\[ v'(t) = (t^2 + 150)' = 2t \][/tex]

Now, applying the quotient rule:
[tex]\[ S'(t) = \frac{(80 t)(t^2 + 150) - (40 t^2)(2t)}{(t^2 + 150)^2} \][/tex]

Simplify the numerator:
[tex]\[ S'(t) = \frac{80 t (t^2 + 150) - 80 t^3}{(t^2 + 150)^2} \][/tex]
[tex]\[ S'(t) = \frac{80 t t^2 + 80 t \cdot 150 - 80 t^3}{(t^2 + 150)^2} \][/tex]
[tex]\[ S'(t) = \frac{80 t^3 + 12000 t - 80 t^3}{(t^2 + 150)^2} \][/tex]
[tex]\[ S'(t) = \frac{12000 t}{(t^2 + 150)^2} \][/tex]

### Simplified derivative:
[tex]\[ S'(t) = \frac{12000 t}{(t^2 + 150)^2} \][/tex]

### Part (b): Evaluating [tex]\( S(10) \)[/tex] and [tex]\( S'(10) \)[/tex]

First, let's evaluate [tex]\( S(10) \)[/tex]:
[tex]\[ S(10) = \frac{40 \cdot 10^2}{10^2 + 150} \][/tex]
[tex]\[ S(10) = \frac{40 \cdot 100}{100 + 150} \][/tex]
[tex]\[ S(10) = \frac{4000}{250} \][/tex]
[tex]\[ S(10) = 16 \][/tex]

So, the total sales after 10 months is 16,000 DVDs (since [tex]\( S \)[/tex] is in thousands).

Next, let's evaluate [tex]\( S'(10) \)[/tex]:
[tex]\[ S'(10) = \frac{12000 \cdot 10}{(10^2 + 150)^2} \][/tex]
[tex]\[ S'(10) = \frac{120000}{(100 + 150)^2} \][/tex]
[tex]\[ S'(10) = \frac{120000}{250^2} \][/tex]
[tex]\[ S'(10) = \frac{120000}{62500} \][/tex]
[tex]\[ S'(10) = 1.92 \][/tex]

So, the rate of change of sales after 10 months is 1920 DVDs/month (since [tex]\( S' \)[/tex] is in thousands per month).

From the above values [tex]\( S(10) = 16 \)[/tex] and [tex]\( S'(10) = 1.92 \)[/tex], the correct interpretation is:

### Answer for interpretation
D. After 10 months, the total sales are 16,000 DVDs and the sales are increasing at the rate of 1920 DVDs per month.

### Part (c): Estimating total sales after 11 months

To estimate the total sales after 11 months, we use the values from part (b):
[tex]\[ S(10) = 16 \][/tex]
[tex]\[ S'(10) = 1.92 \][/tex]

Estimating the sales after 11 months:
[tex]\[ S(11) \approx S(10) + S'(10) \][/tex]
[tex]\[ S(11) \approx 16 + 1.92 \][/tex]
[tex]\[ S(11) \approx 17.92 \][/tex]

Since [tex]\( S(t) \)[/tex] is in thousands of DVDs, after 11 months, the total sales will be approximately:
[tex]\[ 17,920 \text{ DVDs} \][/tex]

Therefore, the total sales after 11 months will be approximately [tex]\( \boxed{17920} \)[/tex] DVDs.