Suppose that the functions [tex]g[/tex] and [tex]h[/tex] are defined for all real numbers [tex]x[/tex] as follows:
[tex]\[
\begin{array}{l}
g(x) = 3x - 4 \\
h(x) = x - 3
\end{array}
\][/tex]

Write the expressions for [tex](h+g)(x)[/tex] and [tex](h \cdot g)(x)[/tex] and evaluate [tex](h-g)(2)[/tex].

[tex]\[
\begin{array}{r}
(h+g)(x) = \square \\
(h \cdot g)(x) = \square \\
(h-g)(2) = \square
\end{array}
\][/tex]



Answer :

Given the functions [tex]\(g(x) = 3x - 4\)[/tex] and [tex]\(h(x) = x - 3\)[/tex], we need to find the expressions for [tex]\((h + g)(x)\)[/tex] and [tex]\((h \cdot g)(x)\)[/tex], and evaluate [tex]\((h - g)(2)\)[/tex].

1. Finding [tex]\((h + g)(x)\)[/tex]:
[tex]\[ (h + g)(x) = h(x) + g(x) \][/tex]
We are given [tex]\(h(x) = x - 3\)[/tex] and [tex]\(g(x) = 3x - 4\)[/tex]. Therefore,
[tex]\[ h(x) + g(x) = (x - 3) + (3x - 4) \][/tex]
Simplify the expression by combining like terms:
[tex]\[ (h + g)(x) = x - 3 + 3x - 4 = 4x - 7 \][/tex]

2. Finding [tex]\((h \cdot g)(x)\)[/tex]:
[tex]\[ (h \cdot g)(x) = h(x) \cdot g(x) \][/tex]
Using the given functions [tex]\(h(x) = x - 3\)[/tex] and [tex]\(g(x) = 3x - 4\)[/tex],
[tex]\[ h(x) \cdot g(x) = (x - 3) \cdot (3x - 4) \][/tex]
This is the product of two binomials. The expression can be left in its factored form as desired:
[tex]\[ (h \cdot g)(x) = (x - 3) (3x - 4) \][/tex]

3. Evaluating [tex]\((h - g)(2)\)[/tex]:
[tex]\[ (h - g)(x) = h(x) - g(x) \][/tex]
Substitute [tex]\(h(x) = x - 3\)[/tex] and [tex]\(g(x) = 3x - 4\)[/tex]:
[tex]\[ h(x) - g(x) = (x - 3) - (3x - 4) \][/tex]
Simplify this expression:
[tex]\[ h(x) - g(x) = x - 3 - 3x + 4 = -2x + 1 \][/tex]
Now, evaluate this at [tex]\(x = 2\)[/tex]:
[tex]\[ (h - g)(2) = -2(2) + 1 = -4 + 1 = -3 \][/tex]

Final answers:
[tex]\[ \begin{array}{r} (h + g)(x) = 4x - 7 \\ (h \cdot g)(x) = (x - 3) (3x - 4) \\ (h - g)(2) = -3 \end{array} \][/tex]