Find the value of [tex]\cot \left(-390^{\circ}\right)[/tex].

A. 0
B. [tex]\sqrt{2}[/tex]
C. 1
D. The answer is not among the choices shown.
E. [tex]\sqrt{3}[/tex]
F. undefined
G. [tex]\frac{1}{2}[/tex]



Answer :

To find the value of [tex]\(\cot(-390^\circ)\)[/tex], follow these steps:

1. Normalize the Angle:
- Angles can be normalized to lie within the range [tex]\([0^\circ, 360^\circ)\)[/tex] by adding or subtracting multiples of 360°.
- Starting with [tex]\(-390^\circ\)[/tex]:

[tex]\[ -390^\circ \mod 360^\circ = -30^\circ \][/tex]

- Since [tex]\(-30^\circ\)[/tex] is still a negative angle, we can add 360° to get a positive equivalent angle:

[tex]\[ -30^\circ + 360^\circ = 330^\circ \][/tex]

So [tex]\(-390^\circ\)[/tex] is equivalent to [tex]\(330^\circ\)[/tex].

2. Convert to Radians:
- Trigonometric functions often require the angle to be in radians. Convert [tex]\(330^\circ\)[/tex] to radians:

[tex]\[ 330^\circ \times \frac{\pi}{180} = \frac{11\pi}{6} \approx 12.04277 \text{ radians} \][/tex]

3. Calculate the Cotangent:
- Cotangent is the reciprocal of tangent. Therefore, we need to evaluate [tex]\(\tan(330^\circ)\)[/tex] first.
- However, directly using the result:

[tex]\[ \cot(330^\circ) = \frac{1}{\tan(330^\circ)} = -1.7320508075688776 \][/tex]

4. Interpret the Results:
- The value [tex]\(-1.7320508075688776\)[/tex] is not among the multiple-choice options given.

Therefore, the value of [tex]\(\cot(-390^\circ)\)[/tex] is not among the choices shown.