Suppose that the functions [tex]\( g \)[/tex] and [tex]\( h \)[/tex] are defined for all real numbers [tex]\( x \)[/tex] as follows:
[tex]\[
\begin{array}{l}
g(x) = 3x - 4 \\
h(x) = x - 3
\end{array}
\][/tex]

Write the expressions for [tex]\( (h+g)(x) \)[/tex] and [tex]\( (h \cdot g)(x) \)[/tex], and evaluate [tex]\( (h-g)(2) \)[/tex].
[tex]\[
\begin{array}{c}
(h+g)(x) = \\
(h \cdot g)(x) = \\
(h-g)(2) =
\end{array}
\][/tex]



Answer :

Let's start by defining the given functions [tex]\( g(x) \)[/tex] and [tex]\( h(x) \)[/tex]:

[tex]\[ g(x) = 3x - 4 \][/tex]
[tex]\[ h(x) = x - 3 \][/tex]

### 1. Expression for [tex]\((h + g)(x)\)[/tex]

To find [tex]\((h + g)(x)\)[/tex], we simply add the two functions [tex]\( h(x) \)[/tex] and [tex]\( g(x) \)[/tex]:

[tex]\[ (h + g)(x) = h(x) + g(x) \][/tex]
[tex]\[ (h + g)(x) = (x - 3) + (3x - 4) \][/tex]

Combine like terms:

[tex]\[ (h + g)(x) = x + 3x - 3 - 4 \][/tex]
[tex]\[ (h + g)(x) = 4x - 7 \][/tex]

### 2. Expression for [tex]\((h \cdot g)(x)\)[/tex]

To find [tex]\((h \cdot g)(x)\)[/tex], we multiply the two functions [tex]\( h(x) \)[/tex] and [tex]\( g(x) \)[/tex]:

[tex]\[ (h \cdot g)(x) = h(x) \cdot g(x) \][/tex]
[tex]\[ (h \cdot g)(x) = (x - 3) \cdot (3x - 4) \][/tex]

### 3. Evaluation of [tex]\((h - g)(2)\)[/tex]

To find [tex]\((h - g)(2)\)[/tex], we need to evaluate the two functions at [tex]\( x = 2 \)[/tex] and then subtract the results:

[tex]\[ (h - g)(2) = h(2) - g(2) \][/tex]

Evaluate [tex]\( h(2) \)[/tex]:

[tex]\[ h(2) = 2 - 3 \][/tex]
[tex]\[ h(2) = -1 \][/tex]

Evaluate [tex]\( g(2) \)[/tex]:

[tex]\[ g(2) = 3 \cdot 2 - 4 \][/tex]
[tex]\[ g(2) = 6 - 4 \][/tex]
[tex]\[ g(2) = 2 \][/tex]

Subtract the results:

[tex]\[ (h - g)(2) = -1 - 2 \][/tex]
[tex]\[ (h - g)(2) = -3 \][/tex]

So, the final results are:

[tex]\[ \begin{array}{c} (h + g)(x) = 4x - 7 \\ (h \cdot g)(x) = (x - 3)(3x - 4) \\ (h - g)(2) = -3 \end{array} \][/tex]