Select the correct answer.

You want to deposit \[tex]$15,000 in a bank at an interest rate of 7 percent per year. What is the future value of this money after three years?

\[
\begin{array}{l}
\text{future value} = P \times (1 + i)^t \\
\text{present value} = \frac{P}{(1 + i)^t}
\end{array}
\]

A. \$[/tex]18,375.65
B. \[tex]$19,661.94
C. \$[/tex]20,407.33



Answer :

To determine the future value of a deposit of [tex]\(\$15,000\)[/tex] at an interest rate of 7% per year over a period of three years, we can use the future value formula:
[tex]\[ \text{future value} = P \times (1 + i)^t \][/tex]
where:
- [tex]\(P\)[/tex] is the principal amount (initial deposit) which is [tex]\(\$15,000\)[/tex],
- [tex]\(i\)[/tex] is the annual interest rate, expressed as a decimal, so [tex]\(i = 0.07\)[/tex],
- [tex]\(t\)[/tex] is the time in years.

Substituting the given values into the formula, we get:

[tex]\[ \text{future value} = 15,000 \times (1 + 0.07)^3 \][/tex]

Next, we calculate the term [tex]\((1 + 0.07)^3\)[/tex]:

[tex]\[ (1 + 0.07)^3 = 1.07^3 \][/tex]

Thus:

[tex]\[ \text{future value} = 15,000 \times 1.07^3 \][/tex]

After calculating [tex]\(1.07^3\)[/tex], we see that:

[tex]\[ 1.07^3 \approx 1.225043 \][/tex]

Therefore:

[tex]\[ \text{future value} = 15,000 \times 1.225043 \approx 18375.645 \][/tex]

So, the future value of the \[tex]$15,000 deposit after three years will be approximately \$[/tex]18,375.645.

Thus, the correct answer is:
[tex]\[ \text{A. } \$18,375.65 \][/tex]