Answer :

Certainly! Let's solve this step-by-step.

Given the function [tex]\( f(x) = x^3 - 2x \)[/tex], we are asked to find the value of the difference quotient [tex]\(\frac{f(h+2) - f(2)}{h}\)[/tex].

First, we need to compute the value of [tex]\( f(h+2) \)[/tex] and [tex]\( f(2) \)[/tex].

### Step 1: Calculate [tex]\( f(h+2) \)[/tex]

To find [tex]\( f(h+2) \)[/tex], we substitute [tex]\( x = h+2 \)[/tex] into the function [tex]\( f(x) \)[/tex]:

[tex]\[ f(h+2) = (h+2)^3 - 2(h+2) \][/tex]

We expand and simplify the expression:

[tex]\[ (h+2)^3 = (h+2)(h+2)(h+2) \][/tex]

Expanding the product:

[tex]\[ (h+2)(h+2) = h^2 + 4h + 4 \][/tex]

[tex]\[ (h^2 + 4h + 4)(h+2) = h^3 + 2h^2 + 4h^2 + 8h + 4h + 8 = h^3 + 6h^2 + 12h + 8 \][/tex]

Thus:

[tex]\[ (h+2)^3 = h^3 + 6h^2 + 12h + 8 \][/tex]

Next, compute the linear term:

[tex]\[ - 2(h + 2) = -2h - 4 \][/tex]

Combining these:

[tex]\[ f(h+2) = (h^3 + 6h^2 + 12h + 8) - 2(h + 2) \][/tex]

[tex]\[ f(h+2) = h^3 + 6h^2 + 12h + 8 - 2h - 4 \][/tex]

Simplifying:

[tex]\[ f(h+2) = h^3 + 6h^2 + 10h + 4 \][/tex]

### Step 2: Calculate [tex]\( f(2) \)[/tex]

To find [tex]\( f(2) \)[/tex], we substitute [tex]\( x = 2 \)[/tex] into the function [tex]\( f(x) \)[/tex]:

[tex]\[ f(2) = 2^3 - 2 \cdot 2 \][/tex]

[tex]\[ f(2) = 8 - 4 \][/tex]

[tex]\[ f(2) = 4 \][/tex]

### Step 3: Calculate the difference quotient

We have:

[tex]\[ f(h+2) = h^3 + 6h^2 + 10h + 4 \][/tex]

[tex]\[ f(2) = 4 \][/tex]

Now, we calculate the difference quotient:

[tex]\[ \frac{f(h+2) - f(2)}{h} = \frac{(h^3 + 6h^2 + 10h + 4) - 4}{h} \][/tex]

Simplify the numerator:

[tex]\[ (h^3 + 6h^2 + 10h + 4) - 4 = h^3 + 6h^2 + 10h \][/tex]

Thus:

[tex]\[ \frac{f(h+2) - f(2)}{h} = \frac{h^3 + 6h^2 + 10h}{h} \][/tex]

Factor out [tex]\( h \)[/tex] in the numerator:

[tex]\[ \frac{h(h^2 + 6h + 10)}{h} \][/tex]

Cancel [tex]\( h \)[/tex]:

[tex]\[ h^2 + 6h + 10 \][/tex]

Therefore, the value of [tex]\(\frac{f(h+2) - f(2)}{h}\)[/tex] is:

[tex]\[ \boxed{h^2 + 6h + 10} \][/tex]