Find the slope of the line that passes through these two points. Simplify completely.

[tex]\[
\begin{array}{c}
(3, 4) \quad (5, 7) \\
m = \frac{7 - 4}{5 - 3}
\end{array}
\][/tex]



Answer :

To determine the slope of the line that passes through the points [tex]\((3, 4)\)[/tex] and [tex]\((5, 7)\)[/tex], we need to use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the two points.

Step 1: Identify the coordinates.
[tex]\[ (x_1, y_1) = (3, 4) \][/tex]
[tex]\[ (x_2, y_2) = (5, 7) \][/tex]

Step 2: Subtract the [tex]\(y\)[/tex]-coordinates to find the change in [tex]\(y\)[/tex] ([tex]\(\Delta y\)[/tex]).
[tex]\[ \Delta y = y_2 - y_1 = 7 - 4 = 3 \][/tex]

Step 3: Subtract the [tex]\(x\)[/tex]-coordinates to find the change in [tex]\(x\)[/tex] ([tex]\(\Delta x\)[/tex]).
[tex]\[ \Delta x = x_2 - x_1 = 5 - 3 = 2 \][/tex]

Step 4: Substitute the changes in [tex]\(y\)[/tex] and [tex]\(x\)[/tex] into the slope formula.
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{3}{2} \][/tex]

Thus, the slope of the line that passes through the points [tex]\((3, 4)\)[/tex] and [tex]\((5, 7)\)[/tex] is:
[tex]\[ m = \frac{3}{2} \][/tex]

So, the correct and simplified form of the slope [tex]\(m\)[/tex] is:
[tex]\[ m = 1.5 \][/tex]