Answer :
To determine the number of pennies in the stack using Cramer's Rule, let [tex]\( p \)[/tex] be the number of pennies, [tex]\( n \)[/tex] the number of nickels, and [tex]\( d \)[/tex] the number of dimes. We form the following system of linear equations based on the given conditions:
1. The total number of coins:
[tex]\[ p + n + d = 24 \][/tex]
2. The total value of the coins (in dollars):
[tex]\[ 0.01p + 0.05n + 0.10d = 1.16 \][/tex]
3. The total height of the coins (in mm):
[tex]\[ 1.52p + 1.95n + 1.35d = 37.27 \][/tex]
These equations can be written in matrix form as:
[tex]\[ \begin{cases} p + n + d = 24 \\ 0.01p + 0.05n + 0.10d = 1.16 \\ 1.52p + 1.95n + 1.35d = 37.27 \end{cases} \][/tex]
This can be represented as:
[tex]\[ A \vec{x} = \vec{B} \][/tex]
where
[tex]\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 0.01 & 0.05 & 0.10 \\ 1.52 & 1.95 & 1.35 \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} p \\ n \\ d \end{bmatrix}, \quad \vec{B} = \begin{bmatrix} 24 \\ 1.16 \\ 37.27 \end{bmatrix} \][/tex]
To use Cramer's Rule, we first find the determinant of matrix [tex]\( A \)[/tex], denoted as [tex]\( \text{det}(A) \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 1 & 1 & 1 \\ 0.01 & 0.05 & 0.10 \\ 1.52 & 1.95 & 1.35 \end{vmatrix} = -0.0455 \][/tex]
Next, to find the determinant for the matrix [tex]\( A_p \)[/tex] where the first column (corresponding to [tex]\( p \)[/tex]) is replaced by the constants from [tex]\( \vec{B} \)[/tex]:
[tex]\[ A_p = \begin{bmatrix} 24 & 1 & 1 \\ 1.16 & 0.05 & 0.10 \\ 37.27 & 1.95 & 1.35 \end{bmatrix} \][/tex]
We calculate the determinant of [tex]\( A_p \)[/tex]:
[tex]\[ \text{det}(A_p) = \begin{vmatrix} 24 & 1 & 1 \\ 1.16 & 0.05 & 0.10 \\ 37.27 & 1.95 & 1.35 \end{vmatrix} = -0.5005 \][/tex]
Using Cramer's Rule, the number of pennies [tex]\( p \)[/tex] is given by:
[tex]\[ p = \frac{\text{det}(A_p)}{\text{det}(A)} = \frac{-0.5005}{-0.0455} = 11 \][/tex]
Therefore, there are 11 pennies in the stack.
1. The total number of coins:
[tex]\[ p + n + d = 24 \][/tex]
2. The total value of the coins (in dollars):
[tex]\[ 0.01p + 0.05n + 0.10d = 1.16 \][/tex]
3. The total height of the coins (in mm):
[tex]\[ 1.52p + 1.95n + 1.35d = 37.27 \][/tex]
These equations can be written in matrix form as:
[tex]\[ \begin{cases} p + n + d = 24 \\ 0.01p + 0.05n + 0.10d = 1.16 \\ 1.52p + 1.95n + 1.35d = 37.27 \end{cases} \][/tex]
This can be represented as:
[tex]\[ A \vec{x} = \vec{B} \][/tex]
where
[tex]\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 0.01 & 0.05 & 0.10 \\ 1.52 & 1.95 & 1.35 \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} p \\ n \\ d \end{bmatrix}, \quad \vec{B} = \begin{bmatrix} 24 \\ 1.16 \\ 37.27 \end{bmatrix} \][/tex]
To use Cramer's Rule, we first find the determinant of matrix [tex]\( A \)[/tex], denoted as [tex]\( \text{det}(A) \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 1 & 1 & 1 \\ 0.01 & 0.05 & 0.10 \\ 1.52 & 1.95 & 1.35 \end{vmatrix} = -0.0455 \][/tex]
Next, to find the determinant for the matrix [tex]\( A_p \)[/tex] where the first column (corresponding to [tex]\( p \)[/tex]) is replaced by the constants from [tex]\( \vec{B} \)[/tex]:
[tex]\[ A_p = \begin{bmatrix} 24 & 1 & 1 \\ 1.16 & 0.05 & 0.10 \\ 37.27 & 1.95 & 1.35 \end{bmatrix} \][/tex]
We calculate the determinant of [tex]\( A_p \)[/tex]:
[tex]\[ \text{det}(A_p) = \begin{vmatrix} 24 & 1 & 1 \\ 1.16 & 0.05 & 0.10 \\ 37.27 & 1.95 & 1.35 \end{vmatrix} = -0.5005 \][/tex]
Using Cramer's Rule, the number of pennies [tex]\( p \)[/tex] is given by:
[tex]\[ p = \frac{\text{det}(A_p)}{\text{det}(A)} = \frac{-0.5005}{-0.0455} = 11 \][/tex]
Therefore, there are 11 pennies in the stack.