Answer :
Sure, let's go through this step by step.
### Part (a) — Formulate Hypotheses:
1. The Null Hypothesis ([tex]$H_0$[/tex]) is a statement that the population mean is equal to the national mean annual salary for school administrators. In this case, it suggests:
[tex]\[ H_0: \mu = 90,000 \][/tex]
2. The Alternative Hypothesis ([tex]$H_a$[/tex]) is a statement indicating that the population mean differs from the national mean. Hence:
[tex]\[ H_a: \mu \neq 90,000 \][/tex]
So, the correct choices are:
1. The Null Hypothesis: [tex]\(\boxed{H_0: \mu = 90,000}\)[/tex]
2. The Alternative Hypothesis: [tex]\(\boxed{H_a: \mu \neq 90,000}\)[/tex]
### Part (b) — Calculate the p-value:
We'll use the sample data to determine if there's enough evidence to reject the null hypothesis.
#### Given Data:
- Sample size ([tex]\(n\)[/tex]): 25
- National mean ([tex]\(\mu\)[/tex]): [tex]$90,000 - Sample mean (\(\bar{x}\)): $[/tex]88,400
- Sample standard deviation ([tex]\(s\)[/tex]): 3000
#### Step-by-Step Solution:
1. Calculate the standard error of the mean (SEM):
[tex]\[ \text{SEM} = \frac{s}{\sqrt{n}} \][/tex]
Given [tex]\(s = 3000\)[/tex] and [tex]\(n = 25\)[/tex]:
[tex]\[ \text{SEM} = \frac{3000}{\sqrt{25}} = \frac{3000}{5} = 600.0 \][/tex]
2. Calculate the test statistic (t-score):
[tex]\[ t = \frac{\bar{x} - \mu}{\text{SEM}} \][/tex]
Substituting the values [tex]\(\bar{x} = 88,400\)[/tex], [tex]\(\mu = 90,000\)[/tex], and [tex]\(\text{SEM} = 600\)[/tex]:
[tex]\[ t = \frac{88,400 - 90,000}{600} = \frac{-1,600}{600} = -2.6667 \][/tex]
3. Determine the degrees of freedom (df):
[tex]\[ \text{df} = n - 1 = 25 - 1 = 24 \][/tex]
4. Calculate the p-value:
The p-value for a two-tailed test can be found using the cumulative distribution function (CDF) of the t-distribution. The value you look for is:
[tex]\[ p = 2 \times \text{P}(T > |t|) \][/tex]
Given the t-score of [tex]\(-2.6667\)[/tex] and 24 degrees of freedom:
[tex]\[ p = 2 \times 0.00675 = 0.0135 \][/tex]
#### Conclusion:
The calculated p-value is [tex]\(0.0135\)[/tex] (rounded to four decimal places).
So, the p-value for the hypothesis test is [tex]\(\boxed{0.0135}\)[/tex].
### Part (a) — Formulate Hypotheses:
1. The Null Hypothesis ([tex]$H_0$[/tex]) is a statement that the population mean is equal to the national mean annual salary for school administrators. In this case, it suggests:
[tex]\[ H_0: \mu = 90,000 \][/tex]
2. The Alternative Hypothesis ([tex]$H_a$[/tex]) is a statement indicating that the population mean differs from the national mean. Hence:
[tex]\[ H_a: \mu \neq 90,000 \][/tex]
So, the correct choices are:
1. The Null Hypothesis: [tex]\(\boxed{H_0: \mu = 90,000}\)[/tex]
2. The Alternative Hypothesis: [tex]\(\boxed{H_a: \mu \neq 90,000}\)[/tex]
### Part (b) — Calculate the p-value:
We'll use the sample data to determine if there's enough evidence to reject the null hypothesis.
#### Given Data:
- Sample size ([tex]\(n\)[/tex]): 25
- National mean ([tex]\(\mu\)[/tex]): [tex]$90,000 - Sample mean (\(\bar{x}\)): $[/tex]88,400
- Sample standard deviation ([tex]\(s\)[/tex]): 3000
#### Step-by-Step Solution:
1. Calculate the standard error of the mean (SEM):
[tex]\[ \text{SEM} = \frac{s}{\sqrt{n}} \][/tex]
Given [tex]\(s = 3000\)[/tex] and [tex]\(n = 25\)[/tex]:
[tex]\[ \text{SEM} = \frac{3000}{\sqrt{25}} = \frac{3000}{5} = 600.0 \][/tex]
2. Calculate the test statistic (t-score):
[tex]\[ t = \frac{\bar{x} - \mu}{\text{SEM}} \][/tex]
Substituting the values [tex]\(\bar{x} = 88,400\)[/tex], [tex]\(\mu = 90,000\)[/tex], and [tex]\(\text{SEM} = 600\)[/tex]:
[tex]\[ t = \frac{88,400 - 90,000}{600} = \frac{-1,600}{600} = -2.6667 \][/tex]
3. Determine the degrees of freedom (df):
[tex]\[ \text{df} = n - 1 = 25 - 1 = 24 \][/tex]
4. Calculate the p-value:
The p-value for a two-tailed test can be found using the cumulative distribution function (CDF) of the t-distribution. The value you look for is:
[tex]\[ p = 2 \times \text{P}(T > |t|) \][/tex]
Given the t-score of [tex]\(-2.6667\)[/tex] and 24 degrees of freedom:
[tex]\[ p = 2 \times 0.00675 = 0.0135 \][/tex]
#### Conclusion:
The calculated p-value is [tex]\(0.0135\)[/tex] (rounded to four decimal places).
So, the p-value for the hypothesis test is [tex]\(\boxed{0.0135}\)[/tex].