Select all the correct answers.

What are the solutions to this equation?

[tex]
2x^2 = -10x + 12
[/tex]

A. [tex]x = 6[/tex]

B. [tex]x = -2[/tex]

C. [tex]x = 3[/tex]

D. [tex]x = 1[/tex]

E. [tex]x = -6[/tex]

F. [tex]x = -3[/tex]



Answer :

To solve the quadratic equation [tex]\(2x^2 + 10x - 12 = 0\)[/tex], we can proceed with the following steps:

1. Rewrite the equation in standard quadratic form:
[tex]\(2x^2 + 10x - 12 = 0\)[/tex]

2. Identify the coefficients:
Here, [tex]\(a = 2\)[/tex], [tex]\(b = -10\)[/tex], and [tex]\(c = 12\)[/tex].

3. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] can be found using the formula
[tex]\(\Delta = b^2 - 4ac\)[/tex].
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ \Delta = (-10)^2 - 4 \cdot 2 \cdot 12 \][/tex]
[tex]\[ \Delta = 100 - 96 \][/tex]
[tex]\[ \Delta = 4 \][/tex]

4. Check the nature of the roots:
Since the discriminant is positive ([tex]\(\Delta > 0\)[/tex]), we will have two distinct real roots.

5. Calculate the roots using the quadratic formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\Delta\)[/tex]:
[tex]\[ x = \frac{-(-10) \pm \sqrt{4}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{10 \pm 2}{4} \][/tex]

6. Find the individual roots:
[tex]\[ x_1 = \frac{10 + 2}{4} = \frac{12}{4} = 3 \][/tex]
[tex]\[ x_2 = \frac{10 - 2}{4} = \frac{8}{4} = 2 \][/tex]

7. Check if the solutions match the provided options:
Compare the solutions [tex]\((3, 2)\)[/tex] with the given options [tex]\(x = 6, x = -2, x = 3, x = 1, x = -6, x = -3\)[/tex]:
The only matching solution is [tex]\(x = 3\)[/tex].

Thus, the correct solution to the equation [tex]\(2x^2 + 10x - 12 = 0\)[/tex] that is among the provided options is:
[tex]\[ x = 3 \][/tex]

Hence, the answer is:
[tex]\[ x = 3 \][/tex]

Other Questions