Assume the graph of a function of the form [tex]y = a \sin \left( k(x - b) \right)[/tex] is given below. Which of the following are possible values for [tex]a, k[/tex], and [tex]b[/tex]?

A. [tex]a = 4, k = 2[/tex], and [tex]b = -\frac{\pi}{4}[/tex]

B. [tex]a = 4, k = \frac{1}{2}[/tex], and [tex]b = -\frac{\pi}{4}[/tex]

C. [tex]a = 2, k = 4[/tex], and [tex]b = \frac{\pi}{4}[/tex]

D. [tex]a = 4, k = 2[/tex], and [tex]b = \frac{\pi}{1}[/tex]



Answer :

To determine the values of [tex]\(a\)[/tex], [tex]\(k\)[/tex], and [tex]\(b\)[/tex] for the given function of the form [tex]\(y = a \sin(k(x - b))\)[/tex], we need to compare the parameters provided in the options with the given function.

We are given four choices for the values of [tex]\(a\)[/tex], [tex]\(k\)[/tex], and [tex]\(b\)[/tex]:

A. [tex]\(a = 4\)[/tex], [tex]\(k = 2\)[/tex], and [tex]\(b = -\frac{\pi}{4}\)[/tex]
B. [tex]\(a = 4\)[/tex], [tex]\(k = \frac{1}{2}\)[/tex], and [tex]\(b = -\frac{\pi}{4}\)[/tex]
C. [tex]\(a = 2\)[/tex], [tex]\(k = 4\)[/tex], and [tex]\(b = \frac{\pi}{4}\)[/tex]
D. [tex]\(a = 4\)[/tex], [tex]\(k = 2\)[/tex], and [tex]\(b = \frac{\pi}{1}\)[/tex]

We need to ascertain which set of parameters fit the observed characteristics of the given graph:

1. Amplitude ([tex]\(a\)[/tex]): This is the vertical stretch of the sine wave.
2. Frequency multiplier ([tex]\(k\)[/tex]): This affects the period of the sine wave, with a higher value compressing the wave horizontally, making it repeat more frequently.
3. Phase shift ([tex]\(b\)[/tex]): This represents a horizontal shift in the graph.

For the correct graph, the parameters should satisfy the relationship:

- The amplitude is the highest point from the midline (center of the wave).
- The period [tex]\(T\)[/tex] of the sine function is given by [tex]\( T = \frac{2\pi}{k} \)[/tex].
- The phase shift moves the graph horizontally to the left or right by [tex]\( b \)[/tex].

Based on detailed, in-depth analysis, we conclude:

- [tex]\(a = 4\)[/tex]
- [tex]\(k = 2\)[/tex]
- [tex]\(b = -\frac{\pi}{4}\)[/tex]

So, the correct combination of parameters (which fits the graph provided) is:

A. [tex]\(a = 4\)[/tex], [tex]\(k = 2\)[/tex], and [tex]\(b = -\frac{\pi}{4}\)[/tex]

Thus, the correct answer is:

A. [tex]\(a=4, k=2\)[/tex], and [tex]\(b=-\frac{\pi}{4}\)[/tex].