Drag each number to the correct location in the fraction. Not all numbers will be used.

The radius of a cone is 2.5 units. The volume of the cone is 19 cubic units. Complete the expression that represents the height of the cone.

[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

Given:
[tex]\[ V = 19 \, \text{units}^3 \][/tex]
[tex]\[ r = 2.5 \, \text{units} \][/tex]

[tex]\[ 19 = \frac{1}{3} \pi (2.5)^2 h \][/tex]

Possible numbers to drag:
19
2.5
7.5
6.25
57

[tex]\[ h = \frac{19}{\left( \frac{1}{3} \pi (2.5)^2 \right)} \][/tex]

Note: The necessary numbers are provided for calculating the height (h). The numbers that will be used in the final expression include 19 and 6.25 (since [tex]\(2.5^2 = 6.25\)[/tex]).



Answer :

To determine the height of a cone with a given radius and volume, we will use the formula for the volume of a cone:

[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

Where:
- [tex]\( V \)[/tex] is the volume of the cone,
- [tex]\( r \)[/tex] is the radius of the cone's base,
- [tex]\( h \)[/tex] is the height of the cone.

Given:
- The radius [tex]\( r = 2.5 \)[/tex] units,
- The volume [tex]\( V = 19 \)[/tex] cubic units.

We need to find the value of [tex]\( h \)[/tex]. First, let's rearrange the formula to solve for the height [tex]\( h \)[/tex]:

[tex]\[ h = \frac{3V}{\pi r^2} \][/tex]

Now, we substitute the given values into the equation:

[tex]\[ h = \frac{3 \times 19}{\pi \times 2.5^2} \][/tex]

Let's calculate the denominator first:

[tex]\[ 2.5^2 = 6.25 \][/tex]

So the expression becomes:

[tex]\[ h = \frac{3 \times 19}{\pi \times 6.25} \][/tex]

Next, simplify the numerator and the denominator:

[tex]\[ \text{Numerator} = 3 \times 19 = 57 \][/tex]
[tex]\[ \text{Denominator} = \pi \times 6.25 \][/tex]

Thus, the expression that represents the height of the cone is:

[tex]\[ h = \frac{57}{\pi \times 6.25} \][/tex]

By substituting the values, we find that the height [tex]\( h \)[/tex] is approximately [tex]\( 2.902986161996171 \)[/tex] units.