Let's simplify the given expression step by step.
The given expression is:
[tex]\[
\frac{126 - 75x}{75} + 00
\][/tex]
Firstly, note that adding 00 does not change the value of the expression. Therefore, we can simplify it as follows:
[tex]\[
\frac{126 - 75x}{75}
\][/tex]
Let's break down the fraction:
[tex]\[
\frac{126}{75} - \frac{75x}{75}
\][/tex]
Now simplify each term individually:
[tex]\[
\frac{126}{75} - x
\][/tex]
We can reduce the fraction [tex]\(\frac{126}{75}\)[/tex]. To do this, find the greatest common divisor (GCD) of 126 and 75, which is 3.
[tex]\[
\frac{126}{75} = \frac{126 \div 3}{75 \div 3} = \frac{42}{25}
\][/tex]
Therefore, the simplified form of the expression is:
[tex]\[
\frac{42}{25} - x
\][/tex]
So, the final simplified expression is:
[tex]\[
\frac{42}{25} - x
\][/tex]
This is the simplest form of the given expression.