Correct and format the following expression so that it is easier to read.

[tex]\frac{126-75 x}{75}+00[/tex]

Response:
[tex]\frac{126 - 75x}{75} + 0[/tex]



Answer :

Let's simplify the given expression step by step.

The given expression is:
[tex]\[ \frac{126 - 75x}{75} + 00 \][/tex]

Firstly, note that adding 00 does not change the value of the expression. Therefore, we can simplify it as follows:
[tex]\[ \frac{126 - 75x}{75} \][/tex]

Let's break down the fraction:
[tex]\[ \frac{126}{75} - \frac{75x}{75} \][/tex]

Now simplify each term individually:
[tex]\[ \frac{126}{75} - x \][/tex]

We can reduce the fraction [tex]\(\frac{126}{75}\)[/tex]. To do this, find the greatest common divisor (GCD) of 126 and 75, which is 3.

[tex]\[ \frac{126}{75} = \frac{126 \div 3}{75 \div 3} = \frac{42}{25} \][/tex]

Therefore, the simplified form of the expression is:
[tex]\[ \frac{42}{25} - x \][/tex]

So, the final simplified expression is:
[tex]\[ \frac{42}{25} - x \][/tex]

This is the simplest form of the given expression.