What is the exponential form of [tex]$x=\log _7(y-4)$[/tex]?

A. [tex]y=7^{x+4}[/tex]
B. [tex]y=x^7+4[/tex]
C. [tex]y=7^x+4[/tex]
D. [tex]y=x^{11}[/tex]



Answer :

To convert the given logarithmic equation [tex]\(x = \log_7(y - 4)\)[/tex] into exponential form, we start by understanding the basic relationship between logarithms and exponents.

The logarithmic equation [tex]\( \log_b(a) = c \)[/tex] is equivalent to the exponential equation [tex]\( b^c = a \)[/tex].

Applying this principle to our specific question:

Given:
[tex]\[ x = \log_7(y - 4) \][/tex]

This means that:
[tex]\[ 7^x = y - 4 \][/tex]

We want to solve for [tex]\( y \)[/tex]:

1. Start with the exponential form derived from the logarithmic equation:
[tex]\[ 7^x = y - 4 \][/tex]

2. To isolate [tex]\( y \)[/tex], add 4 to both sides of the equation:
[tex]\[ 7^x + 4 = y \][/tex]

3. Therefore, we can rewrite the equation as:
[tex]\[ y = 7^x + 4 \][/tex]

Thus, the correct exponential form of the given logarithmic equation [tex]\( x = \log_7(y - 4) \)[/tex] is:

[tex]\[ y = 7^x + 4 \][/tex]

So, the correct answer is:
[tex]\[ y = 7^x + 4 \][/tex]