Solve the equation for [tex]x[/tex].

[tex]\[ 5^{-2x-9} = 5^{4x+15} \][/tex]

A. [tex]x = -3[/tex]
B. [tex]x = -1[/tex]
C. [tex]x = -4[/tex]
D. [tex]x = \frac{1}{5}[/tex]



Answer :

To solve the equation [tex]\( 5^{-2x - 9} = 5^{4x + 15} \)[/tex], follow these steps:

1. Recognize the property of exponents: Since the bases on both sides of the equation are the same, we can equate the exponents. This is due to the property of exponentiation that if [tex]\( a^m = a^n \)[/tex] for [tex]\( a \neq 0 \)[/tex], then [tex]\( m = n \)[/tex].

So, equate the exponents:
[tex]\[ -2x - 9 = 4x + 15 \][/tex]

2. Solve the resulting linear equation: Combine the terms involving [tex]\( x \)[/tex] on one side and the constant terms on the other side.

- First, add [tex]\( 2x \)[/tex] to both sides to move the terms involving [tex]\( x \)[/tex] to the same side:
[tex]\[ -2x - 9 + 2x = 4x + 15 + 2x \][/tex]
Simplify:
[tex]\[ -9 = 6x + 15 \][/tex]

- Next, subtract 15 from both sides to isolate the constant term on the left:
[tex]\[ -9 - 15 = 6x + 15 - 15 \][/tex]
Simplify:
[tex]\[ -24 = 6x \][/tex]

- Finally, divide both sides by 6 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{-24}{6} = \frac{6x}{6} \][/tex]
Simplify:
[tex]\[ x = -4 \][/tex]

Therefore, the solution to the equation [tex]\( 5^{-2x - 9} = 5^{4x + 15} \)[/tex] is
[tex]\[ x = -4 \][/tex]

Check if the value of [tex]\( x \)[/tex] is in the given options:
[tex]\[ x = -3, x = -1, x = -4, x = \frac{1}{5} \][/tex]

The correct answer is [tex]\( x = -4 \)[/tex].