Which expression is equivalent to [tex]\log _3 24^2[/tex]?

A. [tex]3 \log _{24} 2[/tex]
B. [tex]2 \log _3 24[/tex]
C. [tex]3 \log 24[/tex]
D. [tex]2 \log 24[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\log_3 (24^2)\)[/tex], let's go through the steps carefully.

First, we start with the original logarithmic expression:
[tex]\[ \log_3 (24^2) \][/tex]

We can use the property of logarithms that states [tex]\(\log_b (a^c) = c \cdot \log_b (a)\)[/tex]. In this case, [tex]\(a = 24\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = 2\)[/tex]. Applying this property, we get:
[tex]\[ \log_3 (24^2) = 2 \cdot \log_3 (24) \][/tex]

Thus, the expression [tex]\(\log_3 (24^2)\)[/tex] simplifies to:
[tex]\[ 2 \log_3 (24) \][/tex]

Therefore, the correct equivalent expression is:
[tex]\[ 2 \log_3 24 \][/tex]

Among the given options, the equivalent expression to [tex]\(\log_3 (24^2)\)[/tex] is:
[tex]\[ 2 \log _3 24 \][/tex]

So, the right answer is:
[tex]\[ \boxed{2 \log _3 24} \][/tex]