Solve the equation for [tex]x[/tex].

[tex]\[2^{\frac{x}{3}} = 100.6\][/tex]

A. [tex]x \approx 0.41[/tex]

B. [tex]x \approx 2.22[/tex]

C. [tex]x \approx 19.96[/tex]

D. [tex]x \approx 6.65[/tex]



Answer :

Let's solve the equation [tex]\(2^{\frac{x}{3}} = 100.6\)[/tex] for [tex]\(x\)[/tex] step by step.

1. Understand the Equation:
We start with the equation:
[tex]\[ 2^{\frac{x}{3}} = 100.6 \][/tex]

2. Apply Logarithms:
To get [tex]\(x\)[/tex] out of the exponent, we take the natural logarithm (or logarithm to any consistent base) on both sides:
[tex]\[ \log\left(2^{\frac{x}{3}}\right) = \log(100.6) \][/tex]

3. Use Logarithm Properties:
Using the property of logarithms that [tex]\(\log(a^b) = b \cdot \log(a)\)[/tex], we can rewrite the left-hand side:
[tex]\[ \frac{x}{3} \log(2) = \log(100.6) \][/tex]

4. Isolate [tex]\(x\)[/tex]:
To solve for [tex]\(x\)[/tex], we first isolate [tex]\(\frac{x}{3}\)[/tex]:
[tex]\[ \frac{x}{3} = \frac{\log(100.6)}{\log(2)} \][/tex]

5. Solve for [tex]\(x\)[/tex]:
Finally, multiply both sides by 3 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 3 \cdot \frac{\log(100.6)}{\log(2)} \][/tex]

Therefore, the value of [tex]\(x\)[/tex] can be computed directly using logarithms.

6. Numerical Solution:
Plugging the values into a calculator, we find:
[tex]\[ x \approx 19.96 \][/tex]

So, the solution to the equation [tex]\(2^{\frac{x}{3}} = 100.6\)[/tex] is approximately:
[tex]\[ x \approx 19.96 \][/tex]