Simplify the following expression:

[tex]\[
\tan^2 \theta - \left(\tan^2 \theta\right) \operatorname{sen}^2 \theta = \operatorname{sen}^2 \theta
\][/tex]



Answer :

Let's solve the given trigonometric equation step-by-step:
[tex]\[ \tan^2(\theta) - \tan^2(\theta) \sin^2(\theta) = \sin^2(\theta) \][/tex]

To simplify this equation, we can use the known trigonometric identity:
[tex]\[ \tan^2(\theta) = \frac{\sin^2(\theta)}{1 - \sin^2(\theta)} \][/tex]

Let [tex]\( x = \sin^2(\theta) \)[/tex]. Then, we have:
[tex]\[ \tan^2(\theta) = \frac{x}{1 - x} \][/tex]

We substitute this into the original equation:
[tex]\[ \left(\frac{x}{1 - x}\right) - \left(\frac{x}{1 - x} \cdot x\right) = x \][/tex]

Now we need to simplify the left-hand side of the equation:
[tex]\[ \left(\frac{x}{1 - x}\right) - \left(\frac{x^2}{1 - x}\right) \][/tex]

Since both terms in the left-hand side have a common denominator, we can combine them:
[tex]\[ \frac{x - x^2}{1 - x} \][/tex]

Now, simplifying the fraction:
[tex]\[ \frac{x(1 - x)}{1 - x} \][/tex]

Provided that [tex]\(1 - x \neq 0\)[/tex], we can cancel out [tex]\(1 - x\)[/tex] in the numerator and denominator:
[tex]\[ x = x \][/tex]

The simplified equation [tex]\( x = x \)[/tex] holds true for any [tex]\( x \)[/tex], which in this context means any [tex]\(\sin^2(\theta)\)[/tex].

Therefore, the original equation:
[tex]\[ \tan^2(\theta) - \tan^2(\theta) \sin^2(\theta) = \sin^2(\theta) \][/tex]

holds true for any [tex]\( \theta \)[/tex] where [tex]\( \sin^2(\theta) \)[/tex] is defined.