What are the domain and range of [tex]$f(x) = \log x - 5$[/tex]?

A. Domain: [tex]$x \ \textgreater \ 0$[/tex]; Range: all real numbers
B. Domain: [tex][tex]$x \ \textless \ 0$[/tex][/tex]; Range: all real numbers
C. Domain: [tex]$x \ \textgreater \ 5$[/tex]; Range: [tex]$y \ \textgreater \ 5$[/tex]
D. Domain: [tex][tex]$x \ \textgreater \ 5$[/tex][/tex]; Range: [tex]$y \ \textgreater \ -5$[/tex]



Answer :

To determine the domain and range of the function [tex]\( f(x) = \log x - 5 \)[/tex], let's go through the problem step-by-step.

### Domain:
The domain of a function includes all the values of [tex]\( x \)[/tex] for which the function is defined.

1. We start with the component [tex]\( \log x \)[/tex].
2. The logarithm function, [tex]\( \log x \)[/tex], is defined only for [tex]\( x > 0 \)[/tex] because the logarithm of zero or a negative number is undefined in the realm of real numbers.
3. Therefore, [tex]\( \log x \)[/tex] exists only when [tex]\( x > 0 \)[/tex].

So, the domain of the function [tex]\( f(x) = \log x - 5 \)[/tex] is [tex]\( x > 0 \)[/tex].

### Range:
The range of a function consists of all possible values of [tex]\( y \)[/tex] (or [tex]\( f(x) \)[/tex]) that the function can take.

1. Consider the behavior of [tex]\( \log x \)[/tex]. The logarithm function [tex]\( \log x \)[/tex] can take any real number because:
- As [tex]\( x \)[/tex] approaches 0 from the positive side, [tex]\( \log x \)[/tex] approaches [tex]\(-\infty\)[/tex].
- As [tex]\( x \)[/tex] increases towards infinity, [tex]\( \log x \)[/tex] increases towards [tex]\( +\infty \)[/tex].
2. Subtracting 5 from [tex]\( \log x \)[/tex] shifts the entire graph of the logarithm function downward by 5 units. However, this transformation does not change the fact that [tex]\( \log x \)[/tex] can take any real value; it just shifts the range.
3. Consequently, [tex]\( \log x - 5 \)[/tex] can also take any real number.

So, the range of the function [tex]\( f(x) = \log x - 5 \)[/tex] is all real numbers.

### Summary:
The domain of the function [tex]\( f(x) = \log x - 5 \)[/tex] is [tex]\( x > 0 \)[/tex], and the range is all real numbers.

Therefore, the correct answer is:
- Domain: [tex]\( x > 0 \)[/tex]
- Range: all real numbers