Type the correct answer in the box. Round your answer to the nearest thousandth.

What is the average atomic mass of the element?

An element, [tex]$X$[/tex], has two isotopes, [tex]$X-14$[/tex] and [tex]$X-15$[/tex]. Use the data in the table to find the average atomic mass of element [tex]$X$[/tex].

\begin{tabular}{|c|c|c|}
\hline
Isotope & \begin{tabular}{c}
Atomic \\
Mass
\end{tabular} & \begin{tabular}{c}
Abundance \\
[tex]$(\%)$[/tex]
\end{tabular} \\
\hline
[tex]$X-14$[/tex] & 14.003 & 99.636 \\
\hline
[tex]$X-15$[/tex] & 15.000 & 0.364 \\
\hline
\end{tabular}

The average atomic mass of element [tex]$X$[/tex] is [tex]$\boxed{\text{ }}$[/tex] amu.



Answer :

To determine the average atomic mass of element [tex]\( X \)[/tex], we need to consider the atomic masses and the relative abundances of its isotopes. Given the data in the table, we have:

- Isotope [tex]\( X-14 \)[/tex] with atomic mass [tex]\( 14.003 \)[/tex] amu and abundance [tex]\( 99.636\% \)[/tex].
- Isotope [tex]\( X-15 \)[/tex] with atomic mass [tex]\( 15.000 \)[/tex] amu and abundance [tex]\( 0.364\% \)[/tex].

We'll follow these steps:

1. Convert the percentage abundances to decimal fractions:
- Abundance of [tex]\( X-14 \)[/tex]: [tex]\( \frac{99.636}{100} = 0.99636 \)[/tex]
- Abundance of [tex]\( X-15 \)[/tex]: [tex]\( \frac{0.364}{100} = 0.00364 \)[/tex]

2. Calculate the average atomic mass by multiplying each isotope's atomic mass by its corresponding fractional abundance and then adding the results:
- Contribution of [tex]\( X-14 \)[/tex] to the average atomic mass: [tex]\( 14.003 \times 0.99636 = 13.95386908\)[/tex]
- Contribution of [tex]\( X-15 \)[/tex] to the average atomic mass: [tex]\( 15.000 \times 0.00364 = 0.05454\)[/tex]

3. Summing these contributions gives:
- [tex]\( 13.95386908 + 0.05454 = 14.00840908 \)[/tex]

4. Finally, we round this result to the nearest thousandth:
- [tex]\( 14.00840908 \)[/tex] rounded to the nearest thousandth is [tex]\( 14.008 \)[/tex]

Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( 14.008 \)[/tex] amu.

The average atomic mass of element [tex]\( X \)[/tex] is [tex]\( \boxed{14.007} \)[/tex] amu.