TRY IT: Solving a System Using Elimination

Solve the system.
[tex]\[
\begin{array}{l}
x + y = 8 \\
2x^2 - y = -5
\end{array}
\][/tex]

Add the equations, then choose the result.
A. [tex]\( 3x^2 = -13 \)[/tex]
B. [tex]\( 3x^2 = 3 \)[/tex]
C. [tex]\( 2x^2 + x = 3 \)[/tex]
D. [tex]\( 2x^2 = -13 \)[/tex]



Answer :

Let's solve the given system of equations step-by-step:

Given system of equations:

1) [tex]\(x + y = 8\)[/tex]

2) [tex]\(2x^2 - y = -5\)[/tex]

Step 1: Express [tex]\(y\)[/tex] from the first equation.

From [tex]\(x + y = 8\)[/tex]:

[tex]\[ y = 8 - x \][/tex]

Step 2: Substitute [tex]\(y\)[/tex] into the second equation.

Substitute [tex]\(y = 8 - x\)[/tex] into [tex]\(2x^2 - y = -5\)[/tex]:

[tex]\[ 2x^2 - (8 - x) = -5 \][/tex]

Step 3: Simplify the equation.

[tex]\[ 2x^2 - 8 + x = -5 \][/tex]

[tex]\[ 2x^2 + x - 8 = -5 \][/tex]

[tex]\[ 2x^2 + x - 3 = 0 \][/tex]

Step 4: Solve the quadratic equation.

The quadratic equation is [tex]\(2x^2 + x - 3 = 0\)[/tex]. Let's solve this using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -3\)[/tex].

Discriminant, [tex]\(\Delta = b^2 - 4ac\)[/tex]:

[tex]\[ \Delta = 1^2 - 4 \cdot 2 \cdot (-3) = 1 + 24 = 25 \][/tex]

So, the roots are:

[tex]\[ x = \frac{-1 \pm \sqrt{25}}{2 \cdot 2} = \frac{-1 \pm 5}{4} \][/tex]

Thus, we have two solutions for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{-1 + 5}{4} = 1 \][/tex]

[tex]\[ x = \frac{-1 - 5}{4} = -\frac{3}{2} \][/tex]

Step 5: Find corresponding values of [tex]\(y\)[/tex].

For [tex]\( x = 1 \)[/tex]:

[tex]\[ y = 8 - x = 8 - 1 = 7 \][/tex]

For [tex]\( x = -\frac{3}{2} \)[/tex]:

[tex]\[ y = 8 - \left(-\frac{3}{2}\right) = 8 + \frac{3}{2} = \frac{16}{2} + \frac{3}{2} = \frac{19}{2} \][/tex]

Step 6: Write the solution pairs.

The solutions to the system of equations are:

[tex]\[ \left(1, 7\right) \][/tex]

and

[tex]\[ \left(-\frac{3}{2}, \frac{19}{2}\right) \][/tex]

So the solutions of the system are:

[tex]\[ \boxed{\left(1, 7\right) \text{ and } \left(-\frac{3}{2}, \frac{19}{2}\right)} \][/tex]