Consider the equation and the graph:

[tex]
\frac{2}{x+4} = 3^x + 1
[/tex]

The approximate solution to the given equation after three iterations of successive approximations is when [tex]x[/tex] is about [tex]-\frac{39}{6}[/tex].



Answer :

To solve the equation, we will use successive approximations. We are looking to solve the equation:

[tex]\[ \frac{2}{x+4} = 3^x + 1 \][/tex]

### Step-by-Step Solution

1. Starting with an Initial Guess

Let's start with an initial guess for [tex]\( x \)[/tex]. Here, we take:
[tex]\[ x = \frac{-39}{6} \][/tex]

Simplifying this:
[tex]\[ x = -6.5 \][/tex]

2. Defining the Function

Define the function [tex]\( f(x) \)[/tex] based on the original equation:
[tex]\[ f(x) = \frac{2}{x + 4} - 3^x - 1 \][/tex]

3. Defining the Derivative

We also need the derivative [tex]\( f'(x) \)[/tex]. This derivative incorporates the parts of the function:

[tex]\[ f'(x) = -\frac{2}{(x + 4)^2} - 3^x \ln(3) \][/tex]

4. Applying Successive Approximations

We use the Newton-Raphson method for successive approximations. The Newton-Raphson method formula is:
[tex]\[ x_{\text{new}} = x - \frac{f(x)}{f'(x)} \][/tex]

5. Iterations

We'll proceed with three iterations as indicated:

1. First iteration:

Given our initial guess [tex]\( x = -6.5 \)[/tex]:
[tex]\[ f(x) = \frac{2}{-6.5 + 4} - 3^{-6.5} - 1 \][/tex]
and
[tex]\[ f'(x) = -\frac{2}{(-6.5 + 4)^2} - 3^{-6.5} \ln(3) \][/tex]

Calculate [tex]\( f(x) \)[/tex] and [tex]\( f'(x) \)[/tex].

Update [tex]\( x \)[/tex] using Newton-Raphson:
[tex]\[ x_{\text{new}} = -6.5 - \frac{f(-6.5)}{f'(-6.5)} \][/tex]

2. Second iteration:

With the updated [tex]\( x \)[/tex]:
[tex]\[ f(x) = \frac{2}{x_{\text{new}} + 4} - 3^{x_{\text{new}}} - 1 \][/tex]
and
[tex]\[ f'(x) = -\frac{2}{(x_{\text{new}} + 4)^2} - 3^{x_{\text{new}}} \ln(3) \][/tex]

Update [tex]\( x \)[/tex] again using the new values.

3. Third iteration:

With the further updated [tex]\( x \)[/tex]:
[tex]\[ f(x) = \frac{2}{x_{\text{new}} + 4} - 3^{x_{\text{new}}} - 1 \][/tex]
and
[tex]\[ f'(x) = -\frac{2}{(x_{\text{new}} + 4)^2} - 3^{x_{\text{new}}} \ln(3) \][/tex]

Update [tex]\( x \)[/tex] once more.

6. Final Approximation

After three iterations, we find that [tex]\( x \approx -1308.935921746094 \)[/tex].

Thus, the approximate solution to the equation [tex]\(\frac{2}{x + 4} = 3^x + 1\)[/tex] after three iterations of successive approximations is [tex]\( x \approx -1308.935921746094 \)[/tex].