The piecewise function represents the amount of taxes owed, [tex]\( f(x) \)[/tex], as a function of the taxable income, [tex]\( x \)[/tex]. Use the marginal tax rate chart or the piecewise function to answer the question.
Marginal Tax Rate Chart
\begin{tabular}{|l|l|}
\hline
Tax Bracket & Marginal Tax Rate \\
\hline
\[tex]$0 - \$[/tex]10,275 & 10\% \\
\hline
\[tex]$10,276 - \$[/tex]41,175 & 12\% \\
\hline
\[tex]$41,176 - \$[/tex]89,075 & 22\% \\
\hline
\[tex]$89,076 - \$[/tex]170,050 & 24\% \\
\hline
\[tex]$170,051 - \$[/tex]215,950 & 32\% \\
\hline
\[tex]$215,951 - \$[/tex]539,900 & 35\% \\
\hline
> \[tex]$539,901 & 37\% \\
\hline
\end{tabular}
\[ f(x)=\left\{\begin{array}{ll}
0.10x, & 0 \leq x \leq 10,275 \\
0.12x - 205.50, & 10,276 \leq x \leq 41,175 \\
0.22x - 4,323.00, & 41,176 \leq x \leq 89,075 \\
0.24x - 6,104.50, & 89,076 \leq x \leq 170,050 \\
0.32x - 19,708.50, & 170,051 \leq x \leq 215,950 \\
0.35x - 26,187.00, & 215,951 \leq x \leq 539,900 \\
0.37x - 36,985.00, & x \geq 539,901
\end{array}\right. \]
Determine the effective tax rate for a taxable income of \( \$[/tex]95,600 \). Round the final answer to the nearest hundredth.
A. 17.00\%
B. 17.61\%
C. 22.70\%
D. 24.00\%