Answer :
Sure, let's solve this problem step-by-step.
### Given Data
1. The total height of the hill is [tex]\( 112 \frac{3}{4} \)[/tex] meters.
2. The height of the hill that is underwater is [tex]\( \frac{2}{5} \)[/tex] meters.
### Step-by-Step Solution
1. Convert the Total Height to a Decimal:
The total height of the hill is given in mixed number form, [tex]\( 112 \frac{3}{4} \)[/tex].
- Convert [tex]\( \frac{3}{4} \)[/tex] to a decimal:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
- Add this to the whole number part:
[tex]\[ 112 + 0.75 = 112.75 \][/tex]
So, the total height of the hill is [tex]\( 112.75 \)[/tex] meters.
2. Convert the Height Underwater to a Decimal:
The height underwater is [tex]\( \frac{2}{5} \)[/tex].
- Convert [tex]\( \frac{2}{5} \)[/tex] to a decimal:
[tex]\[ \frac{2}{5} = 0.4 \][/tex]
So, the height underwater is [tex]\( 0.4 \)[/tex] meters.
3. Calculate the Height Above the Water:
- Subtract the height underwater from the total height:
[tex]\[ 112.75 \, \text{meters} - 0.4 \, \text{meters} = 112.35 \, \text{meters} \][/tex]
### Conclusion
The height of the hill above the water surface is [tex]\( 112.35 \)[/tex] meters.
### Given Data
1. The total height of the hill is [tex]\( 112 \frac{3}{4} \)[/tex] meters.
2. The height of the hill that is underwater is [tex]\( \frac{2}{5} \)[/tex] meters.
### Step-by-Step Solution
1. Convert the Total Height to a Decimal:
The total height of the hill is given in mixed number form, [tex]\( 112 \frac{3}{4} \)[/tex].
- Convert [tex]\( \frac{3}{4} \)[/tex] to a decimal:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
- Add this to the whole number part:
[tex]\[ 112 + 0.75 = 112.75 \][/tex]
So, the total height of the hill is [tex]\( 112.75 \)[/tex] meters.
2. Convert the Height Underwater to a Decimal:
The height underwater is [tex]\( \frac{2}{5} \)[/tex].
- Convert [tex]\( \frac{2}{5} \)[/tex] to a decimal:
[tex]\[ \frac{2}{5} = 0.4 \][/tex]
So, the height underwater is [tex]\( 0.4 \)[/tex] meters.
3. Calculate the Height Above the Water:
- Subtract the height underwater from the total height:
[tex]\[ 112.75 \, \text{meters} - 0.4 \, \text{meters} = 112.35 \, \text{meters} \][/tex]
### Conclusion
The height of the hill above the water surface is [tex]\( 112.35 \)[/tex] meters.