Fractions and Decimals

A hill, [tex]$112 \frac{3}{4} m$[/tex] in height, has [tex]$\frac{2}{5} m$[/tex] under water. What is the height above the water surface?



Answer :

Sure, let's solve this problem step-by-step.

### Given Data

1. The total height of the hill is [tex]\( 112 \frac{3}{4} \)[/tex] meters.
2. The height of the hill that is underwater is [tex]\( \frac{2}{5} \)[/tex] meters.

### Step-by-Step Solution

1. Convert the Total Height to a Decimal:

The total height of the hill is given in mixed number form, [tex]\( 112 \frac{3}{4} \)[/tex].

- Convert [tex]\( \frac{3}{4} \)[/tex] to a decimal:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]

- Add this to the whole number part:
[tex]\[ 112 + 0.75 = 112.75 \][/tex]

So, the total height of the hill is [tex]\( 112.75 \)[/tex] meters.

2. Convert the Height Underwater to a Decimal:

The height underwater is [tex]\( \frac{2}{5} \)[/tex].

- Convert [tex]\( \frac{2}{5} \)[/tex] to a decimal:
[tex]\[ \frac{2}{5} = 0.4 \][/tex]

So, the height underwater is [tex]\( 0.4 \)[/tex] meters.

3. Calculate the Height Above the Water:

- Subtract the height underwater from the total height:
[tex]\[ 112.75 \, \text{meters} - 0.4 \, \text{meters} = 112.35 \, \text{meters} \][/tex]

### Conclusion

The height of the hill above the water surface is [tex]\( 112.35 \)[/tex] meters.