a. If [tex]$f(x)=(x+3)^3+4$[/tex], find when [tex]$f(x)=12$[/tex] graphically and algebraically.

(15 points for graphing correctly and identifying the solution, 15 points for solving algebraically correctly)

\begin{tabular}{|l|l|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
& \\
\hline
& \\
\hline
& \\
\hline
& \\
\hline
& \\
\hline
& \\
\hline
\end{tabular}

b. Let [tex]$g(x)=f(x+1)-2$[/tex], find when [tex]$g(x)=12$[/tex].

(20 points for solving correctly)



Answer :

Let's solve each part of the problem step-by-step.

### Part (a): Solving [tex]\( f(x) = 12 \)[/tex]

The given function is:
[tex]\[ f(x) = (x + 3)^3 + 4 \][/tex]

We need to find [tex]\( x \)[/tex] when [tex]\( f(x) = 12 \)[/tex]; that is, we solve the equation:
[tex]\[ (x + 3)^3 + 4 = 12 \][/tex]

1. Step 1: Isolate the Cubic Term
[tex]\[ (x + 3)^3 + 4 = 12 \][/tex]
Subtract 4 from both sides:
[tex]\[ (x + 3)^3 = 8 \][/tex]

2. Step 2: Solve for [tex]\( x + 3 \)[/tex]
Take the cube root of both sides:
[tex]\[ x + 3 = \sqrt[3]{8} \][/tex]

Since the cube root of 8 is 2:
[tex]\[ x + 3 = 2 \][/tex]

3. Step 3: Solve for [tex]\( x \)[/tex]
Subtract 3 from both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ x = 2 - 3 \][/tex]
[tex]\[ x = -1 \][/tex]

Thus, the solution is:
[tex]\[ x = -1 \][/tex]

This means that when [tex]\( f(x) = 12 \)[/tex], the value of [tex]\( x \)[/tex] is [tex]\( -1 \)[/tex].

### Filling in the Table

Based on the solution derived:

[tex]\[ \begin{tabular}{|l|l|} \hline $x$ & $y$ \\ \hline -1 & 12 \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline \end{tabular} \][/tex]

### Part (b): Solving [tex]\( g(x) = 12 \)[/tex]

The function [tex]\( g(x) \)[/tex] is defined as:
[tex]\[ g(x) = f(x + 1) - 2 \][/tex]

We need to find [tex]\( x \)[/tex] when [tex]\( g(x) = 12 \)[/tex]; that is, we solve the equation:
[tex]\[ f(x + 1) - 2 = 12 \][/tex]

1. Step 1: Isolate [tex]\( f(x + 1) \)[/tex]
[tex]\[ f(x + 1) - 2 = 12 \][/tex]
Add 2 to both sides:
[tex]\[ f(x + 1) = 14 \][/tex]

2. Step 2: Use the Definition of [tex]\( f(x) \)[/tex]
Recall that [tex]\( f(x) = (x + 3)^3 + 4 \)[/tex]:
[tex]\[ f(x + 1) = ((x + 1) + 3)^3 + 4 \][/tex]
[tex]\[ f(x + 1) = (x + 4)^3 + 4 \][/tex]

So, we need to solve:
[tex]\[ (x + 4)^3 + 4 = 14 \][/tex]

3. Step 3: Isolate the Cubic Term
Subtract 4 from both sides:
[tex]\[ (x + 4)^3 = 10 \][/tex]

4. Step 4: Solve for [tex]\( x + 4 \)[/tex]
Take the cube root of both sides:
[tex]\[ x + 4 = \sqrt[3]{10} \][/tex]

5. Step 5: Solve for [tex]\( x \)[/tex]
Subtract 4 from both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \sqrt[3]{10} - 4 \][/tex]

This gives the numerical value:
[tex]\[ x \approx -1.8455653099681162 \][/tex]

Thus, when [tex]\( g(x) = 12 \)[/tex], the value of [tex]\( x \)[/tex] is approximately [tex]\( -1.8455653099681162 \)[/tex].

### Summary of the Solutions
- For [tex]\( f(x) = 12 \)[/tex], [tex]\( x = -1 \)[/tex].
- For [tex]\( g(x) = 12 \)[/tex], [tex]\( x \approx -1.8455653099681162 \)[/tex].