[tex]$\triangle ABC$[/tex] is reflected about the line [tex]$y=-x$[/tex] to give [tex]$\triangle A'B'C'$[/tex] with vertices [tex]$A'(-1,1)$[/tex], [tex]$B'(-2,-1)$[/tex], [tex]$C'(-1,0)$[/tex]. What are the vertices of [tex]$\triangle ABC$[/tex]?

A. [tex]$A(1,-1), B(-1,-2), C(0,-1)$[/tex]
B. [tex]$A(-1,1), B(1,2), C(0,1)$[/tex]
C. [tex]$A(-1,-1), B(-2,-1), C(-1,0)$[/tex]
D. [tex]$A(1,1), B(2,-1), C(1,0)$[/tex]
E. [tex]$A(1,2), B(-1,1), C(0,1)$[/tex]



Answer :

To determine the vertices of triangle [tex]\( \triangle ABC \)[/tex] based on the given reflection about the line [tex]\( y = -x \)[/tex], follow these steps:

1. Understand the Reflection Rule: When a point [tex]\( (x, y) \)[/tex] is reflected over the line [tex]\( y = -x \)[/tex], its new coordinates become [tex]\( (-y, -x) \)[/tex].

2. Apply the Reflection to Each Vertex:

Given vertices of [tex]\( \triangle A'B'C' \)[/tex]:
- [tex]\( A'(-1, 1) \)[/tex]
- [tex]\( B'(-2, -1) \)[/tex]
- [tex]\( C'(-1, 0) \)[/tex]

Reflect these points about the line [tex]\( y = -x \)[/tex]:

- For [tex]\( A'(-1, 1) \)[/tex]:
[tex]\[ A = (-1, 1) \xrightarrow[\text{reflection}]{} (-1, 1) \][/tex]

- For [tex]\( B'(-2, -1) \)[/tex]:
[tex]\[ B = (-2, -1) \xrightarrow[\text{reflection}]{} (1, 2) \][/tex]

- For [tex]\( C'(-1, 0) \)[/tex]:
[tex]\[ C = (-1, 0) \xrightarrow[\text{reflection}]{} (0, 1) \][/tex]

3. Identify the Correct Set of Vertices:

From the above reflections, we have the vertices of triangle [tex]\( \triangle ABC \)[/tex] as:
- [tex]\( A(-1, 1) \)[/tex]
- [tex]\( B(1, 2) \)[/tex]
- [tex]\( C(0, 1) \)[/tex]

Now, compare these vertices with the given options:

- Option A: [tex]\( A(1, -1), B(-1, -2), C(0, -1) \)[/tex]
- Option B: [tex]\( A(-1, 1), B(1, 2), C(0, 1) \)[/tex]
- Option C: [tex]\( A(-1, -1), B(-2, -1), C(-1, 0) \)[/tex]
- Option D: [tex]\( A(1, 1), B(2, -1), C(1, 0) \)[/tex]
- Option E: [tex]\( A(1, 2), B(-1, 1), C(0, 1) \)[/tex]

Clearly, Option B matches with our reflected vertices:
- [tex]\( A(-1, 1) \)[/tex]
- [tex]\( B(1, 2) \)[/tex]
- [tex]\( C(0, 1) \)[/tex]

Thus, the correct answer is Option B: [tex]\( \boxed{2} \)[/tex].