Answer :
Let's solve this step-by-step.
1. Identify the given dimensions:
- Radius (r) = 8 inches
- Height (h) = 15 inches
2. Calculate the slant height (l) of the cone using the Pythagorean theorem:
- The slant height can be calculated using the formula: [tex]\( l = \sqrt{r^2 + h^2} \)[/tex]
- Substituting the given values: [tex]\( l = \sqrt{8^2 + 15^2} \)[/tex]
- So, [tex]\( l = \sqrt{64 + 225} \)[/tex]
- [tex]\( l = \sqrt{289} \)[/tex]
- [tex]\( l = 17 \)[/tex]
3. Calculate the lateral surface area of the cone:
- The formula for the lateral surface area is [tex]\( \pi r l \)[/tex]
- Substituting the given values: [tex]\( \pi \times 8 \times 17 \)[/tex]
4. Calculate the base area of the cone:
- The formula for the base area is [tex]\( \pi r^2 \)[/tex]
- Substituting the given values: [tex]\( \pi \times 8^2 \)[/tex]
- [tex]\( \pi \times 64 \)[/tex]
5. Calculate the total surface area:
- The total surface area of the cone is the sum of the lateral surface area and the base area: [tex]\( \pi r l + \pi r^2 \)[/tex]
- Substituting the given values:
[tex]\[ \pi \times 8 \times 17 + \pi \times 64 \][/tex]
- Simplifying this,
[tex]\[ 136\pi + 64\pi \][/tex]
[tex]\[ 200\pi \][/tex]
6. Convert the surface area to a numerical value and round to the nearest whole number:
- Numeric approximation: [tex]\( 200 \times 3.141592653589793 \approx 628.3185307179587 \)[/tex]
- Rounding 628.3185307179587 to the nearest whole number gives us 628.
Thus, the amount of material used for the hat, rounded to the nearest whole number, is about 628 square inches.
1. Identify the given dimensions:
- Radius (r) = 8 inches
- Height (h) = 15 inches
2. Calculate the slant height (l) of the cone using the Pythagorean theorem:
- The slant height can be calculated using the formula: [tex]\( l = \sqrt{r^2 + h^2} \)[/tex]
- Substituting the given values: [tex]\( l = \sqrt{8^2 + 15^2} \)[/tex]
- So, [tex]\( l = \sqrt{64 + 225} \)[/tex]
- [tex]\( l = \sqrt{289} \)[/tex]
- [tex]\( l = 17 \)[/tex]
3. Calculate the lateral surface area of the cone:
- The formula for the lateral surface area is [tex]\( \pi r l \)[/tex]
- Substituting the given values: [tex]\( \pi \times 8 \times 17 \)[/tex]
4. Calculate the base area of the cone:
- The formula for the base area is [tex]\( \pi r^2 \)[/tex]
- Substituting the given values: [tex]\( \pi \times 8^2 \)[/tex]
- [tex]\( \pi \times 64 \)[/tex]
5. Calculate the total surface area:
- The total surface area of the cone is the sum of the lateral surface area and the base area: [tex]\( \pi r l + \pi r^2 \)[/tex]
- Substituting the given values:
[tex]\[ \pi \times 8 \times 17 + \pi \times 64 \][/tex]
- Simplifying this,
[tex]\[ 136\pi + 64\pi \][/tex]
[tex]\[ 200\pi \][/tex]
6. Convert the surface area to a numerical value and round to the nearest whole number:
- Numeric approximation: [tex]\( 200 \times 3.141592653589793 \approx 628.3185307179587 \)[/tex]
- Rounding 628.3185307179587 to the nearest whole number gives us 628.
Thus, the amount of material used for the hat, rounded to the nearest whole number, is about 628 square inches.