### SECTION-D

Ashima donated a certain amount of money to a blind school. Her friend wanted to know the amount donated by her, but Ashima did not disclose the amount directly. Instead, she gave a hint:

If [tex]\(\left(x^2 + \frac{1}{x^2}\right) = ₹34\)[/tex], then the amount donated by her is [tex]\(₹\left(x^3 + \frac{1}{x^3} - 9\right)\)[/tex].

Find the amount donated by Ashima to the school.



Answer :

Sure, let's walk through the given problem step by step. The problem states that:

[tex]\[ x^2 + \frac{1}{x^2} = 34 \][/tex]

We need to find the value of:

[tex]\[ x^3 + \frac{1}{x^3} - 9 \][/tex]

First, we can analyze the given equation:

1. Solve the given equation [tex]\(x^2 + \frac{1}{x^2} = 34\)[/tex]:
- We start by letting [tex]\( u = x + \frac{1}{x} \)[/tex].
- From the given hint, we know:
[tex]\[ u^2 = x^2 + 2 + \frac{1}{x^2} \][/tex]
- Rearranging the above equation:
[tex]\[ x^2 + \frac{1}{x^2} = u^2 - 2 \][/tex]
- From the given condition [tex]\( x^2 + \frac{1}{x^2} = 34 \)[/tex], we substitute:
[tex]\[ 34 = u^2 - 2 \][/tex]
- Solving for [tex]\( u \)[/tex]:
[tex]\[ u^2 = 36 \implies u = \pm 6 \][/tex]

2. Determine the expression [tex]\( x^3 + \frac{1}{x^3} \)[/tex]:
- Notice that:
[tex]\[ (x + \frac{1}{x})^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} \][/tex]
This can be rewritten as:
[tex]\[ (x + \frac{1}{x})^3 = x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x}) \][/tex]
- Let [tex]\( v = x^3 + \frac{1}{x^3} \)[/tex], then:
[tex]\[ u^3 = v + 3u \][/tex]
- Substitute [tex]\( u = 6 \)[/tex]:
[tex]\[ 6^3 = v + 3 \cdot 6 \][/tex]
Solving for [tex]\( v \)[/tex]:
[tex]\[ 216 = v + 18 \implies v = 198 \][/tex]
- Now, substitute [tex]\( u = -6 \)[/tex]:
[tex]\[ (-6)^3 = v + 3(-6) \][/tex]
Solving for [tex]\( v \)[/tex]:
[tex]\[ -216 = v - 18 \implies v = -198 \][/tex]

3. Calculate [tex]\( x^3 + \frac{1}{x^3} - 9 \)[/tex]:
- For [tex]\( u = 6 \)[/tex]:
[tex]\[ x^3 + \frac{1}{x^3} = 198 \implies 198 - 9 = 189 \][/tex]
- For [tex]\( u = -6 \)[/tex]:
[tex]\[ x^3 + \frac{1}{x^3} = -198 \implies -198 - 9 = -207 \][/tex]

Therefore, the possible values for the donated amount are:

[tex]\[ ₹189 \, \text{and} \, ₹-207 \][/tex]

Since donation cannot be negative, the negative value is not considered feasible.

Thus, Ashima donated ₹189 or -₹207 possible in steps, hence possible value ₹189 to the blind school.