Here is the corrected and formatted version of the given text:

---

Complete the table with the corresponding y-values for each x-value:

[tex]\[
\begin{array}{c|c}
x & y \\
\hline
-3 & -3 \\
-2 & -2 \\
-1 & -1 \\
0 & 0 \\
1 & \frac{1}{2} \\
2 & 2 \\
3 & 3 \\
\end{array}
\][/tex]

---

This revised version ensures that the task is clear and easy to read. It also aligns with the common format used in textbooks for such questions.



Answer :

To solve the problem, we need to identify and list the corresponding pairs [tex]\((x_i, y_i)\)[/tex]. The given table has the following pairs of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:

[tex]\[ \begin{aligned} &x = -3, &&y = -3, \\ &x = -2, &&y = -2, \\ &x = -1, &&y = -1, \\ &x = 0, &&y = 0, \\ &x = 1, &&y = \frac{1}{2}, \\ &x = 2, &&y = 2, \\ &x = 3, &&y = 3. \end{aligned} \][/tex]

Therefore, the solution to the question involves listing these corresponding pairs of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values:

[tex]\[ (x \text{ values}, y \text{ values}) = ([-3, -2, -1, 0, 1, 2, 3], [-3, -2, -1, 0, 0.5, 2, 3]). \][/tex]

This lists all the values of [tex]\(x\)[/tex] and their corresponding [tex]\(y\)[/tex] values systematically.

So the final correct answer is:

[tex]\[ ([-3, -2, -1, 0, 1, 2, 3], [-3, -2, -1, 0, 0.5, 2, 3]) \][/tex]

This concludes our step-by-step solution.