What is the ordered pair of [tex]$M^{\prime}$[/tex] after point [tex]$M(5,6)$[/tex] is rotated [tex][tex]$90^{\circ}$[/tex][/tex] counterclockwise?

A. [tex]$M^{\prime}(-6,5)$[/tex]
B. [tex]$M^{\prime}(6,-5)$[/tex]
C. [tex][tex]$M^{\prime}(5,-6)$[/tex][/tex]
D. [tex]$M^{\prime}(-5,6)$[/tex]



Answer :

To determine the coordinates of point [tex]\( M' \)[/tex] after rotating point [tex]\( M(5, 6) \)[/tex] by [tex]\( 90^{\circ} \)[/tex] counterclockwise, we can use the standard rotation formula for [tex]\( 90^{\circ} \)[/tex] counterclockwise rotation.

When a point [tex]\((x, y)\)[/tex] is rotated [tex]\( 90^{\circ} \)[/tex] counterclockwise around the origin, the new coordinates [tex]\((x', y')\)[/tex] can be found using the following transformation:
[tex]\[ x' = -y \][/tex]
[tex]\[ y' = x \][/tex]

Let's apply this transformation to the point [tex]\( M(5, 6) \)[/tex]:

1. Start with the original coordinates [tex]\( (5, 6) \)[/tex].
2. Apply the transformation:
[tex]\[ x' = -y = -6 \][/tex]
[tex]\[ y' = x = 5 \][/tex]

Therefore, the new coordinates of the rotated point [tex]\( M' \)[/tex] are [tex]\((-6, 5)\)[/tex].

So, the ordered pair for [tex]\( M' \)[/tex] after the [tex]\( 90^{\circ} \)[/tex] counterclockwise rotation is:
[tex]\[ \boxed{(-6, 5)} \][/tex]

Out of the given options:
- [tex]\( M'(-6, 5) \)[/tex]
- [tex]\( M'(6, -5) \)[/tex]
- [tex]\( M'(5, -6) \)[/tex]
- [tex]\( M'(-5, 6) \)[/tex]

The correct answer is [tex]\( M'(-6, 5) \)[/tex].