The chart below shows the economic costs of two school lunches.

\begin{tabular}{|l|r|r|}
\hline
\multicolumn{3}{|c|}{Economic Cost per Lunch} \\
\hline
& \begin{tabular}{c}
Current \\
lunch
\end{tabular}
& \begin{tabular}{c}
Healthier \\
lunch
\end{tabular} \\
\hline
Main course & [tex]$\$[/tex] 1.15[tex]$ & $[/tex]\[tex]$ 1.85$[/tex] \\
\hline
Side dish & [tex]$\$[/tex] 0.30[tex]$ & $[/tex]\[tex]$ 0.90$[/tex] \\
\hline
Dessert & [tex]$\$[/tex] 0.30[tex]$ & $[/tex]\[tex]$ 0.10$[/tex] \\
\hline
Beverage & [tex]$\$[/tex] 0.30[tex]$ & $[/tex]\[tex]$ 0.05$[/tex] \\
\hline
Total & [tex]$\$[/tex] 2.05[tex]$ & $[/tex]\[tex]$ 2.80$[/tex] \\
\hline
\end{tabular}

The smallest price difference between the two lunches is found in the
A. beverage
B. main course
C. dessert
D. side dish



Answer :

To determine the smallest price difference between the current and healthier lunch options, we need to look at the individual cost differences for each item in the provided chart.

1. Main Course:
- Current lunch cost: \[tex]$1.15 - Healthier lunch cost: \$[/tex]1.85
- Cost difference: \[tex]$1.85 - \$[/tex]1.15 = \[tex]$0.70 2. Side Dish: - Current lunch cost: \$[/tex]0.30
- Healthier lunch cost: \[tex]$0.90 - Cost difference: \$[/tex]0.90 - \[tex]$0.30 = \$[/tex]0.60

3. Dessert:
- Current lunch cost: \[tex]$0.30 - Healthier lunch cost: \$[/tex]0.10
- Cost difference: \[tex]$0.10 - \$[/tex]0.30 = -\[tex]$0.20 (or a decrease of \$[/tex]0.20)

4. Beverage:
- Current lunch cost: \[tex]$0.30 - Healthier lunch cost: \$[/tex]0.05
- Cost difference: \[tex]$0.05 - \$[/tex]0.30 = -\[tex]$0.25 (or a decrease of \$[/tex]0.25)

We have now calculated the differences in costs for each category:
- Main course: \[tex]$0.70 - Side dish: \$[/tex]0.60
- Dessert: -\[tex]$0.20 - Beverage: -\$[/tex]0.25

To find the smallest difference, we compare the absolute values of these differences:
- Absolute value of \[tex]$0.70 is \$[/tex]0.70
- Absolute value of \[tex]$0.60 is \$[/tex]0.60
- Absolute value of -\[tex]$0.20 is \$[/tex]0.20
- Absolute value of -\[tex]$0.25 is \$[/tex]0.25

Among these, the smallest value is \$0.20 (for the dessert).

Therefore, the smallest price difference between the two lunches is found in the dessert.