Answer the questions below based on the two quadratic functions.

\begin{tabular}{|c||c|c|}
\hline
Function 1 & \multicolumn{2}{|c|}{Function 2} \\
\hline
\multicolumn{1}{|c|}{[tex]$f(x) = -3x^2 + 12x - 7$[/tex]} & [tex]$y$[/tex] \\
\hline
4 & -4 \\
\hline
1 & 5 \\
\hline
-2 & 8 \\
\hline
-5 & 5 \\
\hline
-8 & -4 \\
\hline
-11 & -19 \\
\hline
\end{tabular}

(a) What is the vertex of Function 1? [tex]$( \llbracket, \square )$[/tex]

(b) What is the vertex of Function 2? [tex]$( \square )$[/tex]

(c) Which function has the larger maximum value?
- Function 1
- Function 2

(d) What is the larger maximum value? [tex]$\square$[/tex]



Answer :

Let's analyze the given quadratic functions step-by-step to answer the questions.

### Function 1: [tex]\( f(x) = -3x^2 + 12x - 7 \)[/tex]
(a) What is the vertex of Function 1?

The vertex of a quadratic function in the form of [tex]\( ax^2 + bx + c \)[/tex] can be found using the vertex formula:

[tex]\[ x = -\frac{b}{2a} \][/tex]

Here, [tex]\( a = -3 \)[/tex], [tex]\( b = 12 \)[/tex], and [tex]\( c = -7 \)[/tex].

1. Calculate the x-coordinate of the vertex:
[tex]\[ x = -\frac{12}{2 \cdot -3} = -\frac{12}{-6} = 2 \][/tex]

2. Substitute [tex]\( x = 2 \)[/tex] back into the function [tex]\( f(x) \)[/tex] to find the y-coordinate:
[tex]\[ f(2) = -3(2)^2 + 12(2) - 7 = -3(4) + 24 - 7 = -12 + 24 - 7 = 5 \][/tex]

Therefore, the vertex of Function 1 is:
[tex]\[ (2, 5) \][/tex]

### Function 2: Given points are symmetrical around [tex]\( x = -2 \)[/tex] and [tex]\( y = 8 \)[/tex]

(b) What is the vertex of Function 2?

The provided points for Function 2 show symmetry around [tex]\( x = -2 \)[/tex] and reach a maximum at [tex]\( y = 8 \)[/tex]. Thus, the vertex is:
[tex]\[ (-2, 8) \][/tex]

### Comparing Maximum Values

(c) Which function has the larger maximum value?

Compare the y-coordinates of the vertices obtained from both functions:
- Vertex of Function 1: [tex]\( (2, 5) \)[/tex]
- Vertex of Function 2: [tex]\( (-2, 8) \)[/tex]

The maximum value of Function 1 is [tex]\( 5 \)[/tex] and the maximum value of Function 2 is [tex]\( 8 \)[/tex].

Therefore, Function 2 has the larger maximum value.

The solutions summarize:
- (a) The vertex of Function 1 is [tex]\( (2, 5) \)[/tex].
- (b) The vertex of Function 2 is [tex]\( (-2, 8) \)[/tex].
- (c) Function 2 has the larger maximum value, which is [tex]\( 8 \)[/tex].

### Final Answers:
(a) The vertex of Function 1: [tex]\( (2, 5) \)[/tex].
(b) The vertex of Function 2: [tex]\( (-2, 8) \)[/tex].
(c) The function with the larger maximum value is Function 2, and the larger maximum value is [tex]\( 8 \)[/tex].