Answer :
Certainly! Let's simplify each of the expressions step-by-step using the power law.
### A. Simplify (9^4)^12
To simplify the expression [tex]\((9^4)^{12}\)[/tex]:
1. Apply the power of a power rule, which states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (9^4)^{12} = 9^{4 \cdot 12} \][/tex]
2. Calculate the new exponent:
[tex]\[ 4 \cdot 12 = 48 \][/tex]
3. Simplify the expression:
[tex]\[ 9^{48} \][/tex]
### B. Simplify (4^{13})^{12}
To simplify the expression [tex]\((4^{13})^{12}\)[/tex]:
1. Apply the power of a power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (4^{13})^{12} = 4^{13 \cdot 12} \][/tex]
2. Calculate the new exponent:
[tex]\[ 13 \cdot 12 = 156 \][/tex]
3. Simplify the expression:
[tex]\[ 4^{156} \][/tex]
### C. Simplify (9^4)^{-91}
To simplify the expression [tex]\((9^4)^{-91}\)[/tex]:
1. Apply the power of a power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (9^4)^{-91} = 9^{4 \cdot (-91)} \][/tex]
2. Calculate the new exponent:
[tex]\[ 4 \cdot (-91) = -364 \][/tex]
3. Simplify the expression:
[tex]\[ 9^{-364} \][/tex]
### D. Simplify (5^1)^3
To simplify the expression [tex]\((5^1)^3\)[/tex]:
1. Apply the power of a power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (5^1)^3 = 5^{1 \cdot 3} \][/tex]
2. Calculate the new exponent:
[tex]\[ 1 \cdot 3 = 3 \][/tex]
3. Simplify the expression:
[tex]\[ 5^3 = 125 \][/tex]
So, the simplified expressions are:
1. [tex]\((9^4)^{12} = 9^{48}\)[/tex]
2. [tex]\((4^{13})^{12} = 4^{156}\)[/tex]
3. [tex]\((9^4)^{-91} = 9^{-364}\)[/tex]
4. [tex]\((5^1)^3 = 5^3 = 125\)[/tex]
Below are the final results:
1. [tex]\(9^{48}\)[/tex]
2. [tex]\(4^{156}\)[/tex]
3. [tex]\(9^{-364}\)[/tex]
4. [tex]\(125\)[/tex]
### A. Simplify (9^4)^12
To simplify the expression [tex]\((9^4)^{12}\)[/tex]:
1. Apply the power of a power rule, which states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (9^4)^{12} = 9^{4 \cdot 12} \][/tex]
2. Calculate the new exponent:
[tex]\[ 4 \cdot 12 = 48 \][/tex]
3. Simplify the expression:
[tex]\[ 9^{48} \][/tex]
### B. Simplify (4^{13})^{12}
To simplify the expression [tex]\((4^{13})^{12}\)[/tex]:
1. Apply the power of a power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (4^{13})^{12} = 4^{13 \cdot 12} \][/tex]
2. Calculate the new exponent:
[tex]\[ 13 \cdot 12 = 156 \][/tex]
3. Simplify the expression:
[tex]\[ 4^{156} \][/tex]
### C. Simplify (9^4)^{-91}
To simplify the expression [tex]\((9^4)^{-91}\)[/tex]:
1. Apply the power of a power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (9^4)^{-91} = 9^{4 \cdot (-91)} \][/tex]
2. Calculate the new exponent:
[tex]\[ 4 \cdot (-91) = -364 \][/tex]
3. Simplify the expression:
[tex]\[ 9^{-364} \][/tex]
### D. Simplify (5^1)^3
To simplify the expression [tex]\((5^1)^3\)[/tex]:
1. Apply the power of a power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (5^1)^3 = 5^{1 \cdot 3} \][/tex]
2. Calculate the new exponent:
[tex]\[ 1 \cdot 3 = 3 \][/tex]
3. Simplify the expression:
[tex]\[ 5^3 = 125 \][/tex]
So, the simplified expressions are:
1. [tex]\((9^4)^{12} = 9^{48}\)[/tex]
2. [tex]\((4^{13})^{12} = 4^{156}\)[/tex]
3. [tex]\((9^4)^{-91} = 9^{-364}\)[/tex]
4. [tex]\((5^1)^3 = 5^3 = 125\)[/tex]
Below are the final results:
1. [tex]\(9^{48}\)[/tex]
2. [tex]\(4^{156}\)[/tex]
3. [tex]\(9^{-364}\)[/tex]
4. [tex]\(125\)[/tex]