Use the power law to simplify these expressions. Show your work.

A. [tex]\[
(9^4)^{12}
\][/tex]

B. [tex]\[
(4^{13})^{12}
\][/tex]

Fill in missing exponents in each box and show how you found the answers.

C. [tex]\[
(9^4)^{-9} \quad (9^{\_})^4
\][/tex]

D. [tex]\[
(5^1)^{3} \quad (5^{\_})^1
\][/tex]



Answer :

Certainly! Let's simplify each of the expressions step-by-step using the power law.

### A. Simplify (9^4)^12

To simplify the expression [tex]\((9^4)^{12}\)[/tex]:

1. Apply the power of a power rule, which states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (9^4)^{12} = 9^{4 \cdot 12} \][/tex]

2. Calculate the new exponent:
[tex]\[ 4 \cdot 12 = 48 \][/tex]

3. Simplify the expression:
[tex]\[ 9^{48} \][/tex]

### B. Simplify (4^{13})^{12}

To simplify the expression [tex]\((4^{13})^{12}\)[/tex]:

1. Apply the power of a power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (4^{13})^{12} = 4^{13 \cdot 12} \][/tex]

2. Calculate the new exponent:
[tex]\[ 13 \cdot 12 = 156 \][/tex]

3. Simplify the expression:
[tex]\[ 4^{156} \][/tex]

### C. Simplify (9^4)^{-91}

To simplify the expression [tex]\((9^4)^{-91}\)[/tex]:

1. Apply the power of a power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (9^4)^{-91} = 9^{4 \cdot (-91)} \][/tex]

2. Calculate the new exponent:
[tex]\[ 4 \cdot (-91) = -364 \][/tex]

3. Simplify the expression:
[tex]\[ 9^{-364} \][/tex]

### D. Simplify (5^1)^3

To simplify the expression [tex]\((5^1)^3\)[/tex]:

1. Apply the power of a power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (5^1)^3 = 5^{1 \cdot 3} \][/tex]

2. Calculate the new exponent:
[tex]\[ 1 \cdot 3 = 3 \][/tex]

3. Simplify the expression:
[tex]\[ 5^3 = 125 \][/tex]

So, the simplified expressions are:

1. [tex]\((9^4)^{12} = 9^{48}\)[/tex]
2. [tex]\((4^{13})^{12} = 4^{156}\)[/tex]
3. [tex]\((9^4)^{-91} = 9^{-364}\)[/tex]
4. [tex]\((5^1)^3 = 5^3 = 125\)[/tex]

Below are the final results:

1. [tex]\(9^{48}\)[/tex]
2. [tex]\(4^{156}\)[/tex]
3. [tex]\(9^{-364}\)[/tex]
4. [tex]\(125\)[/tex]